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understand the underlying causal relationships in order to devise and explain a design that can 
achieve a specified objective. 

One goal of instruction about cause and effect is to encourage students to see events in 
the world as having understandable causes, even when these causes are beyond human control. 
The ability to distinguish between scientific causal claims and nonscientific causal claims is also 
an important goal. 
 
Progression 
In the earliest grades, as students begin to look for and analyze patterns—whether in their 
observations of the world or in the relationships between different quantities in data (e.g., the 
sizes of plants over time)—they can also begin to consider what might be causing these patterns 
and relationships and design tests that gather more evidence to support or refute their ideas. By 
the upper elementary grades, students should have developed the habit of routinely asking about 
cause-and effect relationships in the systems they are studying, particularly when something 
occurs that is, for them, unexpected. The questions “How did that happen?” or “Why did that 
happen?” should move toward “What mechanisms caused that to happen?” and “What conditions 
were critical for that to happen?” 

In middle and high school, argumentation starting from students’ own explanations of 
cause and effect can help them appreciate standard scientific theories that explain the causal 
mechanisms in the systems under study. Strategies for this type of instruction include asking 
students to argue from evidence when attributing an observed phenomenon to a specific cause. 
For example, students exploring why the population of a given species is shrinking will look for 
evidence in the ecosystem of factors that lead to food shortages, overpredation, or other factors 
in the habitat related to survival; they will provide an argument for how these and other observed 
changes affect the species of interest. 
 

from The Framework for K‐12 Science Education, National Research Council,2012 
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design activities involving scale diagrams and models can support students in developing facility 
with this important concept. 

Once students become familiar with measurements of length, they can expand their 
understanding of scale and of the need for units that express quantities of weight, time, 
temperature, and other variables. They can also develop an understanding of estimation across 
scales and contexts, which is important for making sense of data. As students become more 
sophisticated, the use of estimation can help them not only to develop a sense of the size and 
time scales relevant to various objects, systems, and processes but also to consider whether a 
numerical result sounds reasonable. Students acquire the ability as well to move back and 
forth between models at various scales, depending on the question being considered. They 
should develop a sense of the powers-of-10 scales and what phenomena correspond to what 
scale, from the size of the nucleus of an atom to the size of the galaxy and beyond. 

Well-designed instruction is needed if students are to assign meaning to the types of 
ratios and proportional relationships they encounter in science. Thus the ability to recognize 
mathematical relationships between quantities should begin developing in the early grades with 
students’ representations of counting (e.g., leaves on a branch), comparisons of amounts (e.g., of 
flowers on different plants), measurements (e.g., the height of a plant), and the ordering of 
quantities such as number, length, and weight. Students can then explore more sophisticated 
mathematical representations, such as the use of graphs to represent data collected. The 
interpretation of these graphs may be, for example, that a plant gets bigger as time passes or that 
the hours of daylight decrease and increase across the months. 

As students deepen their understanding of algebraic thinking, they should be able to 
apply it to examine their scientific data to predict the effect of a change in one variable on 
another, for example, or to appreciate the difference between linear growth and exponential 
growth. As their thinking advances, so too should their ability to recognize and apply more 
complex mathematical and statistical relationships in science. A sense of numerical quantity is an 
important part of the general “numeracy” (mathematics literacy) that is needed to interpret such 
relationships. 
 

from The Framework for K‐12 Science Education, National Research Council,2012 
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Progression 
As science instruction progresses, so too should students’ ability to analyze and model 

more complex systems and to use a broader variety of representations to explicate what they 
model. Their thinking about systems in terms of component parts and their interactions, as well 
as in terms of inputs, outputs, and processes, gives students a way to organize their knowledge of 
a system, to generate questions that can lead to enhanced understanding, to test aspects of their 
model of the system, and, eventually, to refine their model. 

Starting in the earliest grades, students should be asked to express their thinking with 
drawings or diagrams and with written or oral descriptions. They should describe objects or 
organisms in terms of their parts and the roles those parts play in the functioning of the object or 
organism, and they should note relationships between the parts. Students should also be asked to 
create plans—for example, to draw or write a set of instructions for building something—that 
another child can follow. Such experiences help them develop the concept of a model of a 
system and realize the importance of representing one’s ideas so that others can understand and 
use them. 

As students progress, their models should move beyond simple renderings or maps and 
begin to incorporate and make explicit the invisible features of a system, such as interactions, 
energy flows, or matter transfers. Mathematical ideas, such as ratios and simple graphs, should 
be seen as tools for making more definitive models; eventually, students’ models should 
incorporate a range of mathematical relationships among variables (at a level appropriate for 
grade-level mathematics) and some analysis of the patterns of those relationships. By high 
school, students should also be able to identify the assumptions and approximations that have 
been built into a model and discuss how they limit the precision and reliability of its predictions. 

Instruction should also include discussion of the interactions within a system. As 
understanding deepens, students can move from a vague notion of interaction as one thing 
affecting another to more explicit realizations of a system’s physical, chemical, biological, and 
social interactions and of their relative importance for the question at hand. Students’ ideas about 
the interactions in a system and the explication of such interactions in their models should 
become more sophisticated in parallel with their understanding of the microscopic world (atoms, 
molecules, biological cells, microbes) and with their ability to interpret and use more complex 
mathematical relationships. 

Modeling is also a tool that students can use in gauging their own knowledge and 
clarifying their questions about a system. Student-developed models may reveal problems or 
progress in their conceptions of the system, just as scientists’ models do. Teaching students to 
explicitly craft and present their models in diagrams, words, and, eventually, in mathematical 
relationships serves three purposes. It supports them in clarifying their ideas and explanations 
and in considering any inherent contradictions; it allows other students the opportunity to 
critique and suggest revisions for the model; and it offers the teacher insights into those aspects 
of each student’s understanding that are well founded and those that could benefit from further 
instructional attention. Likewise in engineering projects, developing systems thinking and system 
models supports critical steps in developing, sharing, testing, and refining design ideas. 
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Matter transfers are less fraught in this respect, but the idea of atoms is not introduced 
with any specificity until middle school. Thus, at the level of grades 3-5, matter flows and cycles 
can be tracked only in terms of the weight of the substances before and after a process occurs, 
such as sugar dissolving in water. Mass/weight distinctions and the idea of atoms and their 
conservation (except in nuclear processes) are taught in grades 6-8, with nuclear substructure and 
the related conservation laws for nuclear processes introduced in grades 9-12. 
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that nothing is happening. Thus they need guidance to begin to appreciate that stability can be 
the result of multiple opposing forces; they should be taught to identify the invisible forces—to 
appreciate the dynamic equilibrium—in a seemingly static situation, even one as simple as a 
book lying on a table. 

An understanding of dynamic equilibrium is crucial to understanding the major issues in 
any complex system—for example, population dynamics in an ecosystem or the relationship 
between the level of atmospheric carbon dioxide and Earth’s average temperature. Dynamic 
equilibrium is an equally important concept for understanding the physical forces in matter. 
Stable matter is a system of atoms in dynamic equilibrium. 

For example, the stability of the book lying on the table depends on the fact that minute 
distortions of the table caused by the book’s downward push on the table in turn cause changes 
in the positions of the table’s atoms. These changes then alter the forces between those atoms, 
which lead to changes in the upward force on the book exerted by the table. The book continues 
to distort the table until the table’s upward force on the book exactly balances the downward pull 
of gravity on the book. Place a heavy enough item on the table, however, and stability is not 
possible; the distortions of matter within the table continue to the macroscopic scale, and it 
collapses under the weight. Such seemingly simple, explicit, and visible examples of how change 
in some factor produces changes in the system can help to establish a mental model of dynamic 
equilibrium useful for thinking about more complex systems. 

Understanding long-term changes—for example, the evolution of the diversity of species, 
the surface of Earth, or the structure of the universe—requires a sense of the requisite time scales 
for such changes to develop. Long time scales can be difficult for students to grasp, however. 
Part of their understanding should grow from an appreciation of how scientists investigate the 
nature of these processes—through the interplay of evidence and system modeling. Student 
developed models that use comparative time scales can also be helpful; for example, if the 
history of Earth is scaled to 1 year (instead of the absolute measures in eons), students gain a 
more intuitive understanding of the relative durations of periods in the planet’s evolution. 
 
Progression 
Even very young children begin to explore stability (as they build objects with blocks or climb 
on a wall) and change (as they note their own growth or that of a plant). The role of instruction in 
the early grades is to help students to develop some language for these concepts and apply it 
appropriately across multiple examples, so that they can ask such questions as “What could I 
change to make this balance better?” or “How fast did the plants grow?” One of the goals of 
discussion of stability and change in the elementary grades should be the recognition that it can 
be as important to ask why something does not change as why it does. 

Likewise, students should come to recognize that both the regularities of a pattern over 
time and its variability are issues for which explanations can be sought. Examining these 
questions in different contexts (e.g., a model ecosystem such as a terrarium, the local weather, a 
design for a bridge) broadens students’ understanding that stability and change are related and 
that a good model for a system must be able to offer explanations for both. 

In middle school, as student’s understanding of matter progresses to the atomic scale, so 
too should their models and their explanations of stability and change. Furthermore, they can 
begin to appreciate more subtle or conditional situations and the need for feedback to maintain 
stability. At the high school level, students can model more complex systems and comprehend 
more subtle issues of stability or of sudden or gradual change over time. Students at this level 
should also recognize that much of science deals with constructing historical explanations of 
how things evolved to be the way they are today, which involves modeling rates of change and 
conditions under which the system is stable or changes gradually, as well as explanations of any 
sudden change. 
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