Writing skills are high on the list of real-world requirements for all students—including science students. Every scientific discipline needs professionals who can ably communicate in writing. Scientists must be able to describe their proposed studies for funding considerations, track their observations and results in their own notes, describe their experimental protocols for their peers to replicate, and synthesize their work to the wider world community. Yet setting aside time to develop these important skills in an already jam-packed science curriculum is often difficult. And even when teachers can carve out such moments, what do science writing lessons look like?

This valuable compendium, which collects articles originally published in the award-winning journals *Science and Children* and *Science Scope*, highlights the importance of science writing and attempts to help elementary and middle school teachers of science tackle the topic with confidence and ease. Outlining both the process and the methods for teaching science writing, articles cover lab reports, science journals, field guides, interactive science notebooks, blogs, and even creative nonfiction and environmental poetry. Practical—and time-efficient—assessment ideas are also covered.

Volume editor Jodi Wheeler-Toppen, herself well-versed in the art of combining writing and science instruction, sums up the case for teaching science writing best: “There are many reasons to have our students write, but the one that is most powerful for me is simple: Writing helps students learn.”
Science the “Write” Way
Science the "Write" Way

Edited by Jodi Wheeler-Toppen

NSTA press
National Science Teachers Association
Arlington, Virginia
Introduction ... ix

Part 1: Writing and Learning in Science
Why Writing?
Chapter 1 On Writing in Science ... 1
By Sandra K. Abell
Chapter 2 Science the “Write” Way: Nonfiction Writing Activities Help Students Learn Science 5
By Valerie L. Akerson and Terrell A. Young
Chapter 3 Unlocking Reading Comprehension With Key Science Inquiry Skills............................... 11
By Roxanne Greitz Miller
Chapter 4 14 Writing Strategies ... 17
By Thomas Turner and Amy Broemmel
Chapter 5 This Isn’t English Class! Using Writing as an Assessment Tool in Science.......................... 25
By Michael Rockow

Building Basic Skills
Chapter 6 Making Thinking Visible: A Method to Encourage Science Writing in Upper Elementary Grades ... 31
By Roxanne Greitz Miller and Robert C. Calfee
Chapter 7 Writing to Learn ... 41
By Brian Hand, Vaughan Prain, and Keith Vance
Chapter 8 Helping Students Write About Science Without Plagiarizing ... 45
By Jodi Wheeler-Toppen
Chapter 9 Learning to Write and Writing to Learn in Science: Refutational Texts and Analytical Rubrics ... 49
By Amy Singletary and Victor Sampson
Chapter 10 Peanut Butter and Jelly Science .. 57
By Donna Farland
Chapter 11 Write It, Do It .. 59
By Erin Peters
Chapter 12 Comments on Students’ Writing .. 63
By Inez Fugate Liftig

Writing With English Language Learners
Chapter 13 From Speaking to Writing in the Structured English Immersion Science Classroom........... 69
By Conrado Laborin Gómez and Margarita Jimenez-Silva
Chapter 14 Integrated Assessments for ELL: Students—and Teachers—Benefit From Incorporating Writing and Drawing in Science .. 75
By Joan Armon and Linda J. Morris
Contents

Chapter 15 *What Writing Represents What Scientists Actually Do?* ... 81
By William C. Robertson

Chapter 16 *Writing Through Inquiry* ... 85
By Paul Jablon

Chapter 17 *Getting Students to Become Successful, Independent Investigators* ... 91
By Jeffrey D. Thomas

Chapter 18 *Kinesthetic Writing, of Sorts* ... 101
By Kirstin Bittel and Darrek Hernandez

Chapter 19 *Multigenre Lab Reports: Connecting Literacy and Science* ... 105
By Leonora Rochwerger, Shelley Stagg Peterson, and Theresa Calovini

Chapter 20 *Lab Report Blues* ... 111
By Andrew Diaz

Part 2: Classroom-Tested Lessons

Writing Across the Genres

Chapter 21 *The Nature of Haiku: Students Use Haiku to Learn About the Natural World and Improve Their Observational Skills* ... 115
By Peter Rillero, JoAnn V. Cleland, and Karen A. Conzelman

Chapter 22 *Keeping Science Current* ... 123
By Barbara Timmerman

Chapter 23 *Extra! Extra! Learn All About It* ... 127
By Kristen Curry, Jerilou Moore, and William J. Sumrall

Chapter 24 *Science Newsletters* ... 135
By Melissa Nail

Chapter 25 *Scientific Journals: A Creative Assessment Tool* ... 139
By Larissa Beckstead

Chapter 26 *A Natural Integration: Student-Created Field Guides Seamlessly Combine Science and Writing* ... 145
By Tracy Coskie, Michelle Hornof, and Heidi Trudel

By Natalie Harr and Richard E. Lee Jr.

Chapter 28 *Students as Authors: Illustrated Science Information Books Created During Integrated Units Are Windows Into Student Understanding* ... 161
By Maria Varelas, Christine C. Pappas, Sofia Kokkino, and Ibett Ortiz

Chapter 29 *Mystery Box Writing* ... 167
By William Straits
Contents

Content-Specific Activities

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Nature’s Advice Book: Third-Grade Students Examine Their Knowledge of Life Science by Considering the Lessons Learned From Nature</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>By Kathryn Mahlin and Amy Robertson</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Ecosystem Journalism: Allow Your Students to Display Their Understanding of Life Science Concepts by Creating an Imaginative Newspaper</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>By Amy Robertson and Kathryn Mahlin</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Linking Science and Writing With Two Bad Ants: A Trade Book Inspires Two Teachers to Connect Their Curricula in a Creative Way</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>By Ingrid Hekman Fournier and Leslie Dryer Edison</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Partners in Crime: Integrating Forensic Science and Writing</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>By Erik Hein</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>A Reason to Write</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>By Peggy Ashbrook</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>A Key to Science: A Simple Writing Technique Helps Students Communicate Understanding of Important Science Concepts</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>By Jo Ann Yockey</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Taking a Look at the Moon</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>By Craig R. Leager</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Creative Writing and the Water Cycle</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>By Rich Young, Jyotika Virmani, and Kristen M. Kusek</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Volcano Résumés</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>By Sandra Rutherford and Cindy Corlett</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Reading and Writing Nonfiction With Children: Using Biographies to Learn About Science and Scientists</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>By Rebecca Monhardt</td>
<td></td>
</tr>
</tbody>
</table>

Part 3: Approaches to Science Journals and Logs

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Journals of Discovery: Incorporating Art and Creative Writing Into Science Journals Leads to Meaningful Reflections on Learning for Both Students and Teachers</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>By Cathy Livingston</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Science Interactive Notebooks in the Classroom</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>By Jocelyn Young</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Using Science Journals to Encourage All Students to Write</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>By Joan C. Fingon and Shallon D. Fingon</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Learning Logs: Writing to Learn, Reading to Assess</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>By Daniel Heuser</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Chapter 44 *Using Web Logs in the Science Classroom* ... 253
By Staycle C. Duplichan

Chapter 45 *Interactive Reflective Logs: Opening Science Notebooks to Peer and Teacher Feedback* ... 259
By Cynthia Minchew Deaton, Benjamin E. Deaton, and Katina Leland

Chapter 46 *A Laboratory of Words: Using Science Notebook Entries as Preassessment Creates Opportunities to Adapt Teaching* .. 265
By Jeanne Clidas

Chapter 47 *The Art of Reviewing Science Journals: Questions to Consider When Planning and Assessing Students’ Journal Entries* ... 271
By Daniel P. Shepardson and Susan Jane Britsch

Chapter 48 *The P.O.E.T.R.Y. of Science: A Flexible Tool for Assessing Elementary Student Science Journals* ... 277
By Jennifer C. Mesa, Michelle L. Klosterman, and Linda L. Cronin-Jones

Index .. 285
Introduction

As I write this introduction, I am struck by how much this task resembles what we want our students to accomplish when we ask them to write in science class. I sit surrounded by piles of *Science Scope*, *Science and Children*, and research journal articles, as well as pages of scrawled, handwritten notes. Already I have collected, sorted, organized, and reorganized my ideas. As I type them, I will clarify them even further. In short, I am learning as I write.

Why Writing?

There are many reasons to have our students write, but the one that is most powerful for me is simple: Writing helps students learn. While writing, students manipulate and organize their ideas (Langer and Applebee 1987). As they try to explain the concepts they are learning, they may discover gaps in their knowledge (Glynn and Muth 1994). When they use analogies to describe how something new is like something they already know, they link new knowledge to prior knowledge, strengthening both (Rivard 1994). In translating between everyday language and scientific language, they clarify their ideas (Prain 2006). In my classes, I have students write because writing can be a powerful tool for learning.

There are other good reasons to have students put pen to paper (or fingers to keyboard). First, writing is an essential part of the practice of science (Norris and Phillips 2003). Scientists record their findings and interpretations, allowing other scientists to examine their work. This record allows scientists to piece together small ideas, eventually building large theories. Scientists themselves use writing to organize their thoughts and find meaning in their work, reflecting on their own and in communication with peers.

Students’ written work also provides a window to their thoughts. Not sure if your students really “get” the molecular nature of matter? Have them write a book that explains the concept to young children (see “Students as Authors,” p. 159). You’ll spot misconceptions you would never pick up during class discussion. Assessing writing doesn’t have to be time consuming. I often have students respond to a question in writing, then quickly scan the answers and sort them into piles based on levels of understanding. This approach lets me know what points need to be addressed and which, if any, students need one-on-one clarification. However, beware of mistaking students’ use of science terminology for understanding science material. As Abell points out in “On Writing in Science” (p. 1) students are skilled at throwing around science words to hide their confusion.

Building Basic Skills

You don’t have to be trained as an English teacher to integrate writing into your curriculum. However, you may need to practice with students the aspects of their writing that are most important in a science classroom. They may need help learning to put ideas into their own words instead of plagiarizing, or they may require instruction on being specific enough for their readers to understand what they’ve written. Such skills help students think more deeply.
about science and enable them to communicate clearly—worthwhile ways to spend class
time. Tools for these tasks and more can be found in the second section of this book, “Building
Basic Skills.”

Writing With English Language Learners

Writing can be an especially important part of the science curriculum for English language
learners. Writing not only helps them process the science they are learning, but also gives
them needed practice using their new language. Science teachers must ease English language
learners into the writing process by integrating it with verbal discussions and drawings to
allow ELL students to fully express their thoughts. See the section “Writing With English
Language Learners” for more guidance.

The “Write” Way?

What kind of writing should you have your students do? The short answer is that it depends
on your goals for the activity. Some teachers want students to replicate reports similar to those
found in scientific journals. To generate such lab reports, students need explicit guidance
regarding what is expected and how well they are moving toward proficiency (see “Lab
Report Blues,” p. 111). Learning to write traditional lab reports introduces students to the
structure of the formal literature of science. However, the actual practice of science involves
many genres of writing, including e-mails, lab notebooks, presentation or seminar notes, and
personal writing that helps scientists understand their own research (Yore, Hand, and Prain
2002). In addition, some worry that using formal lab reports as the primary form of writing in
science class obscures the underlying thinking involved in developing scientific ideas (Wallace,
Hand, and Prain 2004). Resources for both traditional and nontraditional lab reports can be
found in the section “Writing in and About Lab Work.”

If your goal is to stimulate learning for your students, there are several things to
consider (Langer and Applebee 1987). First, think about whether you want students to work
on organizing a large breadth of knowledge or if you want them to gain an in-depth view
of a smaller subject. They are most likely to learn the ideas directly used in their writing.
Second, the more information is manipulated, the better it is understood and remembered.
Assignments that help students make new connections include tasks that ask them to reword
a text, “translate” an idea into another way of writing, and elaborate and make comparisons
(Boscolo and Mason 2001). Finally, keep in mind that if students write about familiar content
and they already understand the relationships between the ideas, writing is unlikely to produce
new learning.

There are many types of writing that can meet these goals. In part 2 of this book,
“Classroom-Tested Lessons,” you’ll find examples of different genres of writing that work
well in classrooms as well as content-specific activities that you can use right away. You’ll
notice that these activities require the kinds of thinking described above.

A word on the value of giving students a chance to write for authentic audiences:
Preparing a text for a real person or group, rather than just pretending to do so, is a powerful motivator (Wallace, Hand, and Prain 2004). Students can write for younger children at their school, for visitors to a museum or nature center, for a local newspaper or PTA newsletter, or even for their classmates. For a richer learning experience, students can receive feedback from that targeted group and revise accordingly. Several activities in this book provide suggestions for activities that involve authentic audiences.

Journals and Logs

Many teachers like to have their students collect their thinking and writing in learning logs or journals. When journals are used well, they become an essential part of science class, as integral as the teacher or textbook. Students value their journals because they hold a personal record of learning and ideas. Journals may be primarily focused on investigations, or they may involve reflection on all sources of learning in the science classroom. There are a variety of ways to organize and assess science journals and logs; several systems are described in “Approaches to Science Journals and Logs.”

The goal of this book is to provide practical guidance for integrating writing into your classroom. Some articles describe general techniques you can use in any class. Others outline writing activities tailored to a specific topic. Even if you don’t teach these topics, you can use such articles as springboards for additional ideas. Whatever science you teach, you’ll find strategies and lessons to get you started.

References

Learning to write well is a long process that comes through teacher modeling, instruction, practice, and feedback. Luckily, the writing process can be used to improve science learning, too. Here are a few good writing suggestions that integrate science while helping students develop their informational writing skills.

Science Journals
There is perhaps no better place than a science journal for students to develop informational writing skills. Daily journal prompts are one way to encourage students to write expansively about developing knowledge (see Figure 1 for sample journal prompts).

Figure 1. Sample journal prompts on trees, followed by examples of typical student responses

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Example Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>What do you think is a tree? How is it different from other plants?</td>
<td>I think a tree is wood and leaves. Trees are bigger than plants.</td>
</tr>
<tr>
<td>What do you think a tree is made of?</td>
<td>Trees are made of wood and leaves.</td>
</tr>
<tr>
<td>What are the parts of the tree? Draw a tree.</td>
<td>Leaves and the wood trunk (Later in the unit they add other parts, such as roots.)</td>
</tr>
<tr>
<td>(After we find a tree to “adopt”*) What is our tree like? What is special about our tree? How do you think our tree might change over time?</td>
<td>Our tree is big. It is special because it is ours! It has big leaves.</td>
</tr>
<tr>
<td>Why do you think trees are different shapes? Why do you think their leaves are different?</td>
<td>Because the leaves catch the sun in different ways.</td>
</tr>
<tr>
<td>(After several weeks) How does our tree look different? How does it look the same?</td>
<td>The trunk still looks the same. It is getting leaves!</td>
</tr>
<tr>
<td>What different shapes of leaves did you find? How can we sort our leaves?</td>
<td>I am putting the big ones together, then putting the spikey ones, and then the skinny ones.</td>
</tr>
<tr>
<td>What things can you tell me about a tree now? How do you think it is different from other plants now?</td>
<td>Trees are a kind of plant.</td>
</tr>
</tbody>
</table>
In journals, students make records of what they are doing in investigations—they organize data by creating tables and write observations based on their investigations. They record, via drawing and writing, characteristics of what they observe (e.g., what a pill bug looks like and how it reacts in different settings). In using the journal in this way, students learn that making records of actual observations is something scientists often do and is a useful kind of nonfiction writing.

Beyond recording observations, students can use journals to write inferences based on their observations. For example, if students observe that pill bugs prefer walking on dirt, they could infer that the dirt is similar to the bugs’ natural environment—thus making meaning of the observations. Students may find that inferences made from early observations change as they make more observations. This tentativeness in inferences is an intrinsic part of the nature of science, but by making the recordings in their journals, students can track their ideas over time and note any observations that lead to a change in inference.

Observations Versus Inference Charts

Another tool that supports science learning while developing informational writing skills is the observation versus inference chart. We’ve used this chart successfully to introduce primary students to the distinction between observation and inference. On the chart, one column is labeled “Observations” and the second is labeled “Inferences.” During a class discussion following an exploration, the teacher records student observations under the “Observations” column and then asks students to make inferences about what those observations mean in the “Inferences” column.

For example, after students have had time to observe snails up close, the teacher would collectively record students’ observations (e.g., “The eyestalks move when I touch them”) on the chart, then ask students to infer the meaning behind the observation (e.g., “They are trying to move them out of my way—to keep them safe”). The teacher can record the response on the inferences side.

After seeing a few examples, students begin making good distinctions between observations and inferences, and they can be given similar smaller charts in which individual or small groups of students can record observations and inferences about other investigations on their own.

Student-Authored Books

To gain simultaneous insights into a content area, research, and literacy, students can research and write their very own book on a theme such as “A Book about Scientists.” Individual students or small groups can research subtopics—“What do scientists do?” “How do I become a scientist?” “What do scientists do in their spare time?”—and write...
chapters for the book (Figure 2). The chapters usually begin as notes from research or interviews of scientists.

Afterward the book can be published for classroom enjoyment. Publishing a book is another good place to reinforce accuracy in writing in terms of spelling and grammar conventions and the process of writing. Student can edit their drafts—prior notes that they have taken—as they type their chapters on the computer.

After the chapters are compiled, students create a table of contents and a reference list to demonstrate that nonfiction writing must be based on accurate information. Then students can illustrate the chapters with their own drawings.

We keep copies of our student-authored books in free-reading-time tubs, so students can revisit their work, encouraging both recall of information about scientists and the importance of writing informational text.

Custom ABC Books

For younger primary grades, have students collectively create informational text in the form of an alphabetical or counting book. Students not only practice writing and researching content but also learn how to gain information from nonfiction text and group it into categories.

Start by reading examples—such as George Ella Lyon’s *A B Cedar: An Alphabet of Trees* (1989), George Shannon’s *Tomorrow’s Alphabet* (1996), or Kathy Darling’s *Amazon ABC* (1996), then choose a content area or have students pick the own content area. Next assign individual students a letter or a number. Each will research information related to that content and write an informational page that relates to their assigned letter or number.

For example, primary students might study organisms, and each child in the class is assigned a letter of the alphabet and selects an organism to study that begins with that letter. The student who gets L studies lemurs. That student then writes and illustrates an informational page about the lemur. When all pages are complete, the teacher compiles the book as a class alphabet book.

Teachers can also involve their students with similar projects related to nonfiction counting books (see References and Resources). April Pulley Sayre and Jeff Sayre’s *One Is a Snail, Ten Is a Crab: A Counting by Feet Book* (2003) is ideal for intermediate students, as readers are required to count, add, and multiply the feet of various creatures. Using *Counting Wildflowers* (McMillan 1986) as a model, a first-grade teacher can take digital pictures of animals on a class field trip to a farm. Students can then record information about what they experienced on the trip.

E-mails to Scientists

Finally, students can pursue science learning by writing e-mails to real scientists. Most appropriate for older elementary students, this activity provides an opportunity for students to compose their own questions about science content. Or, students can interview scientists about how they became scientists and the kinds of work they do. Students can use these e-mail conversations as a basis for a nonfiction report on that scientific specialty. Students can even be required to ask the scientists how they use writing in their work!

Teachers can find contact information for scientist e-mail pals by contacting local universities and science labs. For instance, Indiana University houses a science outreach office in their college of arts and sciences with staff whose purpose is to make contacts between university science faculty and K–12 educators. A similar office is located in Washington State
at the Pacific Northwest National Laboratory’s Office of Science Education, which not only arranges for scientists to visit classrooms and interact with students but also provides professional development opportunities for teachers. Teachers can find similar opportunities for contacts with scientists in their own local areas.

Reports and Other Uses
Nonfiction writing can also be used to help students develop understandings of science as inquiry, as students record observations, inferences, and results of investigations, and write formal reports to share with peers. Students can also use writing to design their own investigations, leading to further understanding of investigations as recommended by the National Science Education Standards (NRC 1996).

Writings Are Assessments
Incorporating various nonfiction writing activities such as those suggested above not only encourages students to think about science content, but also results in material/work that can help teachers assess student understanding.

For example, observation versus inference charts can be used to capture a picture of what the whole class understands about a given topic. If a student records an observation of an investigation exploring whether pill bugs prefer light or dark environments as “Pill bugs love the dark,” the teacher will know that the student is confusing the observation with an inference. The teacher can then ask the student to describe how he or she knows that pill bugs “love the dark.” When the student states that it is because pill bugs tend to stay in the dark side of their environment, the teacher can point out to the student that moving to the dark side is the observation and the inference is that they “love the dark.”

Similarly, individual journal writings can be used to assess what individual students understand about a science content area. In a unit exploring electrical circuits, students can be asked to respond to a journal prompt of “How do you think electricity works?” several times throughout the unit. Initially the student may respond with something like “Electricity is lightening,” whereas later in the unit the student may respond with something like “Electricity makes things work,” and finally the student may respond with something like “Electricity works through a complete circle—a circuit.” Thus, the teacher can track the development of the student’s idea over time, from less informed to more informed views.

Whether supporting content learning, guiding teacher instruction, or furthering the development of students’ literacy or science process skills—or all of the above—nonfiction writing opportunities are an essential aspect of science learning from which teachers and students benefit in many ways.

References

Resources

In 1905, a young scientist named Albert Einstein published a three-page paper presenting his theory of relativity. That brief paper was a major step in revolutionizing how physicists throughout the world thought, and it changed the way the world in general thought about science (Penrose 2005). That a relatively small piece of writing could be so important certainly illustrates the significance of writing to science. Good scientists record what they do—their results, procedures and operations, observations, and hypotheses, as well as their problems and questions.

Scientists need to develop their writing skills for a number of reasons:

- Writing down their ideas and describing what they do and find gives scientists, and those who read and depend on their work, a more accurate record from which to attempt to replicate results.
- Written accounts of what scientists observe that are recorded at the time of their observations help scientists remember more accurately and completely.
- Written summaries of scientific work allow scientists to synthesize bodies of work and look at them holistically so that they or other scientists can extend and develop ideas further.
- Written notes about their work allow scientists to reflect on and mentally process what they have observed.
- Written presentations of their work allow scientists to share and publicize their findings, get credit for their work, and, as a result, claim the benefits of their successes.
- Written descriptions of planned work enable scientists to obtain funding to continue their often-expensive work.
- Written summaries of their ideas allow scientists to share the importance of their work with nonscientists.
Why We Need to Teach Writing in Science Classes

Any science teacher who wants his or her students to be engaged in real science is going to engage them in real science writing. Students do not intuitively know how to do such writing, and instruction in scientific writing is not likely to occur in other school subjects. This writing instruction can serve two purposes: It can increase science understanding and engage students in activities that are useful in the assessment process in science itself. Montgomery (2005, p. 28) points out that student writing provides the teacher with “a tangible demonstration of learning and gives students the opportunity to connect their personal experiences to the content.” Montgomery goes on to say that well-crafted, thoughtfully planned writing assignments require the student to do a “deep analysis of subject material.”

Well-designed science writing assignments essentially have three critical attributes:

1. They provide authentic purposes for writing.
2. They motivate students to want to write and “do” science.
3. They help students plan and structure both their writing and their science activities.

These attributes are inextricably and symbiotically related. They combine to make the writing assignment comprehensible, authentically important, and feasible. Matsumura and his colleagues (2002) found that the cognitive challenge of the writing assignment had a significant effect on the quality of students’ final drafts. That is, when students felt that assignments were cognitively challenging and satisfying to complete, they worked more effectively in producing a finished writing product. Writing experiences should help students feel good about their own writing.

Writing in science should begin with clear, imaginative writing purposes and stimuli that are then scaffolded in such a way that students are able to find an organizational structure for their writing. Writing fluency is often enhanced and supported by experiences like brainstorming or free writing.

Writing Assignments That Work in Science Classes

Writing in The American Scientist, Gopen and Swan (1990, p. 550) assert, “The fundamental purpose of scientific discourse is not the mere presentation of information and thought, but rather its actual communication.” Of course, much of the public and many scientists would question this idea because they often think that scientific concepts, data, and analysis are extremely complex, difficult, and abstract. However, like Gopen and Swan, we would argue that what matters most in scientific writing is that a majority of the reading audience accurately perceives what the science writer has in mind, and that when science writing improves, it is a sign that the thinking is better. In the interest of promoting such thinking, we would like to offer 14 examples of different kinds of writing assignments that can provide legitimate, purposeful writing practice while promoting solid science learning and review.
1. Writing Hypothetical Letters
Often scientists share their observations and questions, as well as their differences of opinion, by letter or, in today’s world, by blogs and e-mail messages. A very simple, yet effective example of a scientific exchange can be seen in the children’s book, *Dear Mr. Blueberry*, by Simon James. In this book, James tells a story through an exchange of letters between a little girl named Emily and her teacher, Mr. Blueberry. Read the book aloud and talk about how Emily seeks help, information, and even opinion but is strongly true to her own observations. Students can work collaboratively to create their own hypothetical exchange of letters between themselves and a scientist or teacher. An important lesson of this poignantly sweet book is that a person should believe in the power of evidence even when it contradicts authority. A second lesson is that it is possible to contradict without being disrespectful to authority. In their letters, students can share observations about some theme or topic. If possible, the return letters by the “authorities” or “scientists” can come from older children or parents with science backgrounds. This activity can also be accomplished electronically in collaboration with university students studying to be science teachers.

2. Process Steps Analysis
After observing and/or taking part in a demonstration of a scientific process, the class could discuss what they saw. After talking the observations through, they can analyze and document the sequential steps that they would need to completely replicate the demonstration. In some cases, where it is safe and feasible, students might even have the opportunity to recreate the demonstration following their own written steps.

3. Identifying Critical Attributes
Small groups of students are asked to look at something. This can be an object of any kind or even a plant or an animal. Each group has a different object. They are given the opportunity to make a thorough examination, and identify its critical attributes. Critical attributes are those observable qualities that make the object, plant, or animal unique, allowing it to be distinguished from all others. The groups can then compile a list of what they believe to be the critical attributes of what they have seen. The lists are shared with the whole class, and students attempt to match the correct item with the critical attribute list. If accurate matching is not possible, students are encouraged to revisit and revise their lists.

4. Collaborative Writing of Scientific Stories
The teacher begins by reading (or having the students read) a science-related trade book. Fiction books, such as *How Groundhog’s Garden Grew* (Cherry 2003), and nonfiction books, such as *One Tiny Turtle* (Davies 2001), can be used effectively for this activity. After students have become familiar with the story, the teacher starts a discussion focusing on the scientific content or process described in the book. Once the teacher is satisfied that students understand the science of the book, he or she has the class sit in a circle on the floor. Three clipboards with paper are given to students positioned at equal intervals around the circle. Each student holding a clipboard is asked to think about the science described in the book and then write one sentence that describes the first event in the book. They then pass the clipboards to the right. Students are instructed that when they receive a clipboard, they need to read what...
has been written up to that point on the paper and then write an additional sentence describing the next event in the scientific process described in the story. Each paper will, in the end, contain a complete retelling of the story in the sequence it occurred. (Three papers are used to provide a means of keeping students actively engaged and to document student understanding of various parts of the content and process.)

5. Chain of Evidence
Because most students have watched many television shows dealing with forensic evidence in criminal investigations, those observation experiences can be used as the basis for writing activities. First the teacher identifies a crime for the team to investigate. Appropriate possibilities include robberies, kidnappings, acts of vandalism, or simple crimes that happen around the school every day. (Avoid scenarios involving violent or graphic crimes.) Begin with a brainstorming session. Have the class create a detailed summary of the chain of evidence leading to the arrest and trial of a suspect in their invented crime. Encourage them to use rich details with leading questions, such as the following: What kind of evidence are we looking for? Where are we likely to find evidence? How do we distinguish evidence related to the crime from what we would normally expect within the crime scene? What are some different ways of reconstructing the crime based on the evidence? What are some possibilities indicated by the evidence?

As an alternative to providing students with only the hypothetical crime, the teacher can also provide a list of “suspects” with a brief introduction to each. Students might then choose a “guilty” suspect and create a well-reasoned written explanation of fictional clues and evidence that could lead to the suspect’s arrest. Students then have to learn the difference between being reasonably sure that someone is guilty and having sufficient evidence to bring them to trial, then having enough evidence to convict. Students can assume the roles of judge and jury in response to one another’s assembly of evidence, ultimately deciding if the written chain of evidence is sufficient to lead to a trial and subsequent conviction.

6. Accident Report
In this activity, the teacher creates an accident scene by either using photos or actually staging an accident. Examples of cases might include a lunchroom mishap such as spilled trays; a playground incident such as a fall from a piece of equipment, someone being hit by a ball, or a collision between two running students; or a classroom situation such as stacks of papers falling on the floor and getting mixed together. After examining the accident scene and gathering evidence, the investigators are asked to write reports based on their observations. In very small groups, students then read one another’s reports, noting inconsistencies or missing details.

7. Label Analysis
The teacher first organizes students into groups and then provides each group with an empty package or label for some product. The products can be foods, medicines, household cleaners, or anything else with a label that lists the ingredients. Each group then writes a description of what they know about the product based on the list of ingredients—in other words, what the contents list tells you and what it doesn’t tell you. For example, if something advertised as
Chapter 4

8. Technical Directions
The teacher begins by giving students toys or models that require some assembly. Students are then asked to take the role of the marketing staff at the product’s manufacturing company. Students must first practice assembling the toy or model, carefully noting the quickest, most efficient steps for assembly. Then they are responsible for writing the directions that will be included on the package. Finally, students attempt to assemble other groups’ toys or models using the new directions.

9. Scientific Directions
The teacher organizes the class into small groups and assigns each group a familiar location within a short distance from the school. Each group then discusses the best route to the assigned place and writes directions for getting there using landmarks based on scientific observations taken along the route. For example, the directions could include descriptions of plants, geological formations, or environmental cues. As a follow-up, have students see if they can navigate to a spot using others’ directions.

10. Scientific Reporting
After a discussion of the essentials of accurately reporting scientific observations, students are organized into groups. Each group is given a video recording of a scientific experiment and asked to create a detailed list of observations that someone could use to recreate the experiment. The group is allowed to view the video as many times as they like to ensure that their observation list is accurate and complete. (See Resources for recommended video collections.)

11. Proposal Writing
The basic function of a proposal is to describe and pitch to others ideas for projects, papers, and research studies. Proposal writing is an essential activity for many scientists and the skills needed to write proposals should be developed as early as possible. Instead of simply assigning projects and research reports, teachers can provide general parameters for the intended assignment (e.g., research related to rock formation or a project depicting a food chain). Proposal writing activities can begin with a simple brainstorming session for project ideas. The fundamental question is, What do we want to do? After helping generate a list of ideas, the teacher can then lead students through the process of selecting and refining a single idea from the list. The next step is to create a proposal outline. The teacher may choose to have a set of specifications or even provide a simple outline such as the following:

- Title (A proposal…)
- Abstract or summary
- An introduction giving background and explaining the situation
- A statement of the project problem to be solved
- Some suggestion or suggestions about solutions to the problem
Chapter 4
Part 1: Writing and Learning in Science

- Some explanation of how you will solve the problem
- An outline describing the proposed project outcome
- Step-by-step description of your research methods
- Conclusions

After the outline is created, assign a different group to write a draft for each part. Finally, piece together the proposal, editing each part so that it is consistent with the rest. The combined class effort can then serve as a model for small groups or individual students to develop their own proposals.

12. Pourquoi Story Writing
Pourquois stories are fictional explanations of natural phenomena. They are usually based on definitive descriptions of the phenomena themselves. One example is “How the Elephant Got His Long Trunk.” A series of logical plot actions are described, connecting the main characters in the story to the creation of the phenomenon. Provide students with a list of natural phenomena and have them create their own pourquoi stories for one of these. Stress the importance of including scientific facts in explanations. Examples of appropriate subjects include why magnets attract, why we have tornadoes, why snakes shed their skin, why hens cackle and roosters crow, why owls hoot, how squirrels got their bushy tails, and why volcanoes erupt.

13. Preparing Descriptive Research Through Web Quests
Web quests are designed to be structured inquiry activities in which information is drawn from the internet. Web quests focus the learners’ time on using information rather than looking for it and emphasize thinking at the levels of analysis, synthesis, and evaluation. Essentially, students are directed to a sequenced series of specific websites to solve a structured inquiry problem. A number of websites provide examples of Web quests (see Internet Resources). An example of a teacher-created web quest might ask students to determine which simple machines would be most effective in performing a particular multistep task. The web quest would be designed to lead students to a series of websites that present verbal and/or pictorial information about simple machines. Students would use the information to develop a written solution to the problem. Teachers can also train students to develop their own web quests as an alternative means of demonstrating understanding of particular scientific content or processes.

14. News Clip Observations
The teacher shows a short news film clip without sound. The clip may show a natural disaster, the effect of weather, destruction brought about by human effort, or another science-related concept. Students then write descriptions of the event based on their observations. After students have completed their descriptions, replay the film clip with sound and ask students to compare the accompanying news commentary to what they wrote.
Final Note
A science class is not complete unless it helps students learn to think like scientists, and writing is an essential part of such thinking. The 14 writing experiences described here for integrating meaningful, interesting writing into science are not intended to be followed to the letter. Rather, they are all adaptable ideas. Neither are they intended to replace traditional science instruction. However, if we want our students to think like scientists, then it is only logical that we should ask them to observe, document, and write like scientists, as well. We believe that these and other thoughtfully structured writing activities can be integrated into science classrooms in a way that addresses curriculum, provides alternative, authentic means of assessing student understanding, and motivates students to become actively involved in the learning process.

References

Internet Resources
WebQuest.org
www.webquest.org
Teachnology
www.teach-nology.com/teachers/lesson_plans/computing/web_quests/science
Science Web Quests
www.can-do.com/uci/k12-lessons.html
Aeronautical engineering, 131
Age appropriateness, 273
Amplified assessment, 264
Analytical rubrics, 49–55
Analyzing science journals, 228–229
Anonymous peer-editing lab, 112
Ant investigation worksheet, 185
Assessment rubrics, 179
Assessment tools, books as, 162–164
Assessments
amplified, 264
journals, 142–143, 244–245
notebooks, 235–236
P.O.E.T.R.Y. tool, 278
prior knowledge, 265–266
science journals, 244–245
science notebooks, 235–236
Attitudes, scientific, 222
Background knowledge, assessing, science notebooks for, 268
Biography, 219–225
Biological engineering, 131
Blogs, 253–258
assessment, 258
student permission slip, 255
with student postings, 256
for teachers, 255
Books
as assessment tools, 162–164
brainstorming, 173
Brainstorming, 92, 173

Chain of evidence, 20
Chapter from student-authored book, sample, 6
Chart, data, sample, 155
Chemical engineering, 131
Children's Literacy and Science Project, 271
Civil engineering, 131
CLASP. See Children's Literacy and Science Project
Class discussion, 61
Class inquiry questions, 92
Class question, constructing, 92
Collaborative writing, 19–20
Communication
concepts regarding, 82–83
as science inquiry skill, 14
Community involvement, forensic science, 190–191
Concepts, communication of, 202
Conducting experiments, 95–96
Connecting knowledge, 32
Consequences, consideration of, 222
Content accuracy, 53
CORE Model of Instruction, 31–35
Creative writing, 211–214
Critical attributes, identifying, 19
Critical thinking, 47–48
Current events science journal, 124
Current science, 123–125
Curricula connections, 183–187
Custom ABC books, 7
Data charting, 47, 155–156
sample, 155
Directions, 57–61
student, 57–61
sample, 60
Discussion webs, 47–48
sample, 48
Draft, 53
final, 53
Dramatic writing, lesson, 57–58
Drawing, 75–80
e-mails to scientists, 7–8
Ecosystem journalism, 177–181
student newspaper, 177–181
Index

Editing, peer, 111–113
Educational web logs for teachers, 255
Electrical engineering, 131
Elementary grades, 31–39
Engineering careers, 131
English immersion, 69–74
English language learners, 75–80
drawing, 75–80
Entry in journal, sample, 157
Environmental engineering, 131
Essays, 139–141, 175
Evaluation form, 224
Experiment procedures, 95
Explaining, as science inquiry skill, 14
Exploration, 205–209
Extensions, 98
Feedback, 2, 242–243
Field guides, 145–151, 153–160
page, 148, 158
sample, 148, 158
rubrics, 150
sample, 150
Final draft, 53
First grade, 153–160
Flipbook, 101
construction, 102
text example, 103
Focus statements, 34
Forensic science, 189–192
community involvement, 190–191
mock case, 191–192
Generalizations, 251
Genetic engineering, 131
Graphic organizers, 33
Graphs, 96
evaluation of, 97
GRASP strategy, 46–47
Guiding journal entries, 240–241
Guiding science journal entries, 240–241
Haiku writing, 115–121
assignments, 119

benefits of, 116
children writing, 117–119
extensions, 120
student perspectives, 119–120
Home web logs, with student postings, 256
Hypothesizing, 95
Hypothetical letters, 19
Identifying critical attributes, 19
Illustrated information books, 161–166
Imaginative writing, 29–30
Immersion in English, 69–74
Inference charts, observations, contrasted, 6
Inquiry assignments, 130
Inquiry skills, 14
Insights, 38
Interactive notebooks, 233–237
rubrics, 236
strategy, 208
Interactive reflective logs, 259–264
amplified assessment, 264
creating, 259–261
interactive nature of, 263–264
reflective thinkers, 264
sample, 262–263
Interactive science notebooks, 208, 233–237
Interpreting data, as science inquiry skill, 14
Inverted-pyramid writing, 131
Investigation, 85–89, 91–99
IRLs. See Interactive reflective logs
Journal entries, 157
sample, 157
Journal prompts, student responses, 5
Journal rubrics, 230, 244
Journal scale rubrics, 230
Journal writing, 70
Journaling rubric scale, 230
Journalism, student newspaper, 177–181
Journals, 5–6, 139–143, 227–231, 239–245
analyzing, 228–229
assessment, 142–143, 244–245
before/after reflections, 229–230
defining, 239
essays, 139–141
feedback, 242–243
guiding journal entries, 240–241
letters, 141–142
logistics, 240
makeover, 228
motivation, 241–242
notebooks, contrasted, 277
notebooks contrasted, 277
poetry, 142
reviewing, 271–275
 age-appropriate responses, 273
 Children’s Literacy and Science Project, 271
 conceptualizing science, 272
decision making, 274
instructional structuring, 272–273
interpretation, 274
misconceptions, identifying, 272
view selection, 273–274
student analysts, 230–231
students with special needs, 243
value of, 239–240
Justifications, 251

K-W-L chart, 159
Key-word process, 203
Kinesthetic writing, 101–103

Lab report rubrics, 107, 113
Lab reports, 105–109
 assessing success, 108–109
demonstrating learning, 107–108
 hands-on activity, 105–106
Label analysis, 20–21
Learning logs, 247–252
 applications, 251
 explanation, 251
generalizations, 251
justifications, 251
reflection, 248–249
rubrics, 249–251
Letters, 141–142
Letters to authors, 28
Linear strings, 33
Listing variables for experiment, 93
Logic, respect for, 222
Logistics, journals, 240
Logs, reflective, interactive, 259–264
 amplified assessment, 264
 creating, 259–261
 interactive nature of, 263–264
 reflective thinkers, 264
Longer projects, strategy for, 202
Maps, 154
Measures of success, 37
Mechanical engineering, 131
Misconceptions, identifying, 272
Mock case, forensic science, 191–192
Mode continuum phases, 70
 experimenting, 70
 journal writing, 70–71
 learning key vocabulary, 70–71
 teacher-guided reporting, and, 70–71
Motivation, 241–242
Multigenre lab reports, 105–109
 assessing success, 108–109
demonstrating learning, 107–108
 hands-on activity, 105–106
rubrics, 107
Mystery box writing, 167–172
Mystery plant identification worksheet, 147
National Science Education standards, 116
Nature detectives, assignments for, 155
Nature of science, 221
News clips, 22
Newsletters, 135–137
 student, sample, 136
Newspaper task sheet, 129
Newspapers, 127–133, 177–181
 content ideas, 131
Nonfiction, 5–9, 219–225
Notebook entries, 76
Notebook rubrics, 236
Notebooks, 76, 233–237, 265–269, 277
 assessing, 235–236
assessing background knowledge, 268
becoming records, 269
interactive, 233–237
journal, contrasted, 277
journals, contrasted, 277
prior knowledge assessment, 265–266
quick writes, 266–269
as records, 269
science journals, contrasted, 277
writing prompts, 268

Observational skills, 14, 115–121
Observations, inference charts, contrasted, 6
Organizing information, 32–33
Outlines, 53

Peer editing, 111–113
Persuasive writing, 26
Plagiarizing, 45–48
Planning, as science inquiry skill, 14
Pluto project, 27
Poetry, 142
acronym explanation, 278
scoring rubric, 279
Pop-up biography, 222–224
Prairie resources, 179
Prediction, as science inquiry skill, 14
Prelab investigation, 92
Prior knowledge assessment, 265–266
Process steps analysis, 19
Prompts
sample, 36
writing, 5, 34, 36, 51–52, 268
Proposal writing, 21–22
Publishing student newspaper, 179

Questioning, as science inquiry skill, 14
Quick writes, 266–269

Rationale for science writing, 1, 193–196
Reading comprehension, 11–16
Records, science notebooks as, 269
Reflection, 33–35, 248–249
student, sample, 159
Reflective logs, 259–264
amplified assessment, 264
creating, 259–261
interactive, sample, 262–263
interactive nature of, 263–264
reflective thinkers, 264
Reflective thinkers, 264
Refutational-text grading rubric, 53
Refutational texts, 50
Refutational writing prompt, 51
Related variables sets, 94
Reporting on accidents, 20
Reports, 8
Research, 63–65
via web, 22
Reviewing, as science inquiry skill, 14
Reviewing journals, 271–275
age-appropriate responses, 273
Children’s Literacy and Science Project, 271
conceputalizing science, 272
decision making, 274
instructional structuring, 272–273
interpretation, 274
misconceptions, identifying, 272
view selection, 273–274
Role playing, 26–28
Rough drafts, 53
Rubrics, 37, 98, 159
analytical, 49–55
science writing, 49–55
assessment, 179
field guide, sample, 150
interactive notebook, 236
journals, 230, 244
lab reports, 98, 113
learning log, 249–251
multigenre lab report, 107
P.O.E.T.R.Y. scoring, 279
refutational-text grading, 53
sample field guide, 150
science interactive notebook, 236
Safety procedures, 96
Sample chapter, student-authored book, 6
Sample data chart, 155
Sample discussion web, 48
Sample field guide page, 148, 158
Sample field guide rubrics, 150
Sample interactive reflective log, 262–263
Sample journal entry, 157
Sample prompt, corresponding writing, graphic organizer, 36
Sample science journal entry, 157
Sample student directions, 60
Sample student newsletter, 136
Sample student reflection, 159
Sample writing technique, 197–203
Scavenger hunts, 154
Science careers, 131
Science-cognition-literacy framework, 11–16
Science interactive notebooks, 234, 236
rubric, 236
Science journals, 5–6, 139–143, 227–231, 239–245
defining, 239, 277–278
entry, sample, 157
logistics, 240
makeover, 228
prompts, student responses, 5
reviewing, 271–275
age-appropriate responses, 273
Children’s Literacy and Science Project, 271
conceptualizing science, 272
decision making, 274
instructional structuring, 272–273
interpretation, 274
misconceptions, identifying, 272
view selection, 273–274
rubric, 244
rubric scale, 230
science notebook, contrasted, 277
writing, 70
Science newspaper task sheet, 129
Science notebooks, 76, 233–237, 265–269, 277
assessing, 235–236
becoming records, 269
interactive, 233–237
journal, contrasted, 277
journals, contrasted, 277
prior knowledge assessment, 265–266
quick writes, 266–269
as records, 269
science journal, contrasted, 277
science journals, contrasted, 277
writing prompts, 268
Science wheel, writing in, 41, 43
Science writing
analytical rubrics, 49–55
as assessment tool, 25–30
biographies, 219–225
blogs, 253–258
creative writing, 211–214
current science, 123–125
curricula connection, 183–187
dramatic writing, 57–58
drawing, 75–80
ecosystem journalism, 177–181
editing by peers, 111–113
English language learners, 75–80
field guides, 145–151, 153–160
first grade, 153–160
forensic science, 189–192
haiku, 115–121
illustrated information books, 161–166
interactive reflective logs, 259–264
interactive science notebooks, 233–237
investigation, 85–89, 91–99
journals, 139–143, 227–231, 239–245
kinesthetic writing, 101–103
lab reports, 105–109
learning logs, 247–252
learning tool, 41–44
multigenre lab reports, 105–109
mystery box writing, 167–172
newsletters, 135–137
newspapers, 127–133, 177–181
nonfiction, 5–9, 219–225
peer editing, 111–113
plagiarizing, 45–48
reading comprehension, 11–16
reasons to write, 193–196
refutational texts, 49–55
reviewing journals, 271–275
sample writing technique, 197–203
science inquiry skills, 11–16
science notebook, 265–269
scientist’s view, 81–83
strategies for, 17–23
structured English immersion science, 69–74
student-authored books, 6
student directions, 57–61
student writing, 63–67
third grade, 173–175
trade books, 183–187
upper elementary grades, 31–39
web logs, 253–258
Scientific attitudes, 222
Scientific directions, 21
Scientific reporting, 21
Scientist’s view, 81–83
SCL framework. See Science-cognition-literacy
SEL. See Structured English immersion
Servers, web logs, 255
Solar cooker lab, 92–97
Sources, integrating, 47
Special needs, students with, 243
Story writing, 22
Strategies for writing, 17–23
Streamlining, 66–67
Structured English immersion, 69–74
Student-authored books, 6–7
Student-centered labs, 91–92
Student directions, 57–61
sample, 60
Student journals, 139–143
assessments, 142–143
essays, 139–141
letters, 141–142
poetry, 142
Student maps, 154
Student newsletters, 135–137
sample, 136
Student newspapers, 127–133, 177–181
Student permission slip, web log use, 255
Student reflection, 159
Student research paper, key-word process, 203
Student surveys, 64–65
Students with special needs, 243
Success, measures of, 37
Supporting details, 34
Supports in science writing, 1–2
Task organization, 42
Task sheet, genetics assignment, 43
Teachers’ insights, 38
Technical directions, 21
Techniques, 197–203
Testable problems, 94
Thinkers, reflective, 264
Third grade, 173–175
Trade books, 183–187
Upper elementary grades, 31–39
Value of science journals, 239–240
Variables sets, relation of, 94
Verification, 222
Water cycle, 211–214
Web discussion, 47–48
sample, 48
Web logs, 253–258
assessment, 258
servers, 255
student permission slip, 255
for teachers, 255
Web quest research, 22
Web research, 22
Wheel, science, writing in, 41, 43
Writing
analytical rubrics, 49–55
as assessment tool, 25–30
biographies, 219–225
blogs, 253–258
creative writing, 211–214
current science, 123–125
curricula connection, 183–187
dramatic writing, 57–58
drawing, 75–80
ecosystem journalism, 177–181
editing by peers, 111–113
English language learners, 75–80
field guides, 145–151, 153–160
first grade, 153–160
forensic science, 189–192
haiku, 115–121
illustrated information books, 161–166
interactive reflective logs, 259–264
interactive science notebooks, 233–237
investigation, 85–89, 91–99
journals, 139–143, 227–231, 239–245
kinesthetic writing, 101–103
lab reports, 105–109
learning logs, 247–252
learning tool, 41–44
multigenre lab reports, 105–109
mystery box writing, 167–172
newsletters, 135–137
newspapers, 127–133, 177–181
nonfiction, 5–9, 219–225
peer editing, 111–113
plagiarizing, 45–48
reading comprehension, 11–16
reasons to write, 193–196
refutational texts, 49–55
reviewing journals, 271–275
sample writing technique, 197–203
science inquiry skills, 11–16
science notebook, 265–269
scientist’s view, 81–83
strategies for, 17–23
structured English immersion science, 69–74
student-authored books, 6
student directions, 57–61
student writing, 63–67
third grade, 173–175
trade books, 183–187
upper elementary grades, 31–39
web logs, 253–258
Writing center activities, 170
Writing prompts, 5, 34, 36, 51–52, 268
Writing technique, sample, 197–203
Xanga, use of, 253
Xboxes, 253
Zoology, 131
Zoom-ins, 146, 149