How do you improve upon perfection? For years, new and experienced elementary school teachers alike have extolled the virtues of Picture-Perfect Science Lessons—the expertly combined appeal of children’s picture books with Standards-based science content. The award-winning, bestselling book presents ready-to-teach lessons, complete with student pages and assessments, that use high-quality fiction and nonfiction picture books to guide hands-on science inquiry.

This newly revised and expanded edition of Picture-Perfect Science Lessons manages to surpass the original. Classroom veterans Karen Ansberry and Emily Morgan, who also coach teachers through nationwide workshops, know elementary educators are usually crunched for science instructional time and could often use refresher explanations of scientific concepts. So the authors added comprehensive background notes to each chapter and included new reading strategies.

They still show you exactly how to combine science and reading in a natural way with classroom-tested lessons in physical science, life science, and Earth and space science. And now they offer five brand-new lessons—“Batteries Included,” “The Secrets of Flight,” “Down the Drain,” “If I Built a Car,” and “Bugs!”—bringing the total to 20. As always, the appropriate National Science Education Standards are clearly identified throughout.

Picture-Perfect Science Lessons draws on such diverse—and engaging—books as Dr. Xargle’s Book of Earthlets, A House for Hermit Crab, Rice Is Life, Oil Spill!, Sheep in a Jeep, and Weird Friends: Unlikely Allies in the Animal Kingdom. As a result, both reluctant scientists and struggling readers will quickly find themselves absorbed in scientific discovery. You’ll love how effective this book is, and your students will love learning about science.
Contents

Foreword ... ix
Preface .. xi
Acknowledgments .. xiii
About the Authors .. xv
About the Picture-Perfect Science Program .. xvi
Lessons by Grade ... xvii

1 Why Read Picture Books in Science Class? .. 1
2 Reading Aloud ... 9
3 Teaching Science Through Inquiry .. 17
4 BSCS 5E Instructional Model ... 27
5 National Science Education Standards ... 33
6 Earthlets ... 37
 Dr. Xargle’s Book of Earthlets and Seven Blind Mice
7 Name That Shell! ... 55
 Seashells by the Seashore and A House for Hermit Crab
8 Rice Is Life .. 71
 Rice Is Life and Rice
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Bugs! The Perfect Pet; Bugs Are Insects; Ant, Ant, Ant! (An Insect Chant)</td>
<td>307</td>
</tr>
<tr>
<td>22</td>
<td>Batteries Included Electrical Circuits and Too Many Toys</td>
<td>325</td>
</tr>
<tr>
<td>23</td>
<td>The Secrets of Flight How People Learned to Fly and Kids’ Paper Airplane Book</td>
<td>345</td>
</tr>
<tr>
<td>24</td>
<td>Down the Drain Down the Drain: Conserving Water and A Cool Drink of Water</td>
<td>361</td>
</tr>
<tr>
<td>25</td>
<td>If I Built a Car If I Built a Car and Inventing the Automobile</td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>Glossary</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>399</td>
</tr>
</tbody>
</table>
Foreword

I had the good fortune to meet the authors of Picture-Perfect Science Lessons, Karen Ansberry and Emily Morgan, in the fall of 2003 at a workshop I facilitated on inquiry-based science. At that event, we had a lively discussion about the nature of science and how the teachers in attendance might impart their love of science to elementary-age children. The authors then took me aside and told me of their plans to write a book for teachers (and parents, too) using children’s literature to engage children in scientific inquiry. I have always believed that children in the elementary grades would experience more science if elementary teachers were provided with better ways to integrate literacy and science. So, of course, I was intrigued.

As I reviewed this manuscript, I was reminded of one of my favorite “picture books” as an adult—The Sense of Wonder, by Rachel Carson. In that book, Ms. Carson expresses her love of learning and how she helped her young nephew discover the wonders of nature. As she expressed,

I sincerely believe that for the child, and for the parent seeking to guide him, it is not half so important to know as to feel. If facts are the seeds that later produce knowledge and wisdom, then the emotions and the impressions of the senses are the fertile soil in which the seeds must grow. The years of early childhood are the time to prepare the soil. Once the emotions have been aroused—a sense of the beautiful, the excitement of the new and the unknown, a feeling of sympathy, pity, admiration or love—then we wish for knowledge about the object of our emotional response. Once found, it has lasting meaning. It is more important to pave the way for the child to want to know than to put him on a diet of facts he is not ready to assimilate. (Carson 1956)

Rachel Carson used the natural environment to instill in her nephew the wonders of nature and scientific inquiry, but I believe, along with the authors, that picture books can have a similar emotional effect on children and inspire their wonder and their curiosity. Then, when teachers and parents couple scientific inquiry experiences with the content of the picture books, science really comes to life for children. Picture-Perfect Science Lessons provides an ideal framework that encourages children to read first; explore objects, organisms, and events related to what they’ve read; discern relationships, patterns, and explanations in the world around them; and then read more to gather more information, which will lead to new questions worth investigating.

In addition, Picture-Perfect Science Lessons is the perfect antidote to leaving science behind in the elementary classroom. As elementary teachers struggle to increase the basic literacy of all students, they often cannot find the time to include science in the curriculum, or they are discouraged from teaching science when literacy scores decline. Teachers need resources such as Picture-Perfect Science Lessons to genuinely integrate science and literacy. There is no doubt that inquiry-based science experiences
motivate children to learn. Through this book, teachers have the best of both worlds—they will have the resources to motivate children to read and to “do science.” What could be better?

As one of the developers of the BSCS 5E Instructional Model, I was gratified to learn that the authors intended to use the “5Es” to structure their learning experiences for children and teachers. These authors, as with many teachers across the country, had become acquainted with the 5Es and used the model extensively to promote learning in their own classrooms; however, they did not know the origin of the model until we had a conversation about BSCS and the 5Es. This book helps set the record straight—the 5E Instructional Model was indeed developed at BSCS in the late 1980s in conjunction with an elementary curriculum project and thus is appropriately titled “The BSCS 5E Instructional Model” in this book. The authors’ iterative use of the BSCS 5Es is appropriate because the model is meant to be fluid, where one exploration leads to a partial explanation that invites further exploration before a child has a grasp of a complete scientific explanation for a phenomenon. As the authors mention, the final E—evaluate—is applied more formally at the end of a unit of study, but the BSCS 5E model by no means implies that teachers and students do not evaluate, or assess, student learning as the students progress through the model. Ongoing assessment is an integral part of the philosophy of the BSCS 5Es and the authors appropriately weave formative assessment into each lesson.

Once you place your toe into the waters of this book, I guarantee that you will dive right in! Whether you are a teacher, a parent, or both, you will enjoy this inviting approach to inquiry-based science. If you follow the methods outlined in Picture-Perfect Science Lessons, you and the children with whom you interact will have no choice but to learn science concepts through reading and scientific inquiry.

I don’t know about you, but I’m rather curious about those sheep in a jeep. Enjoy!

Nancy M. Landes
Senior Science Educator
Center for Professional Development
Biological Sciences Curriculum Study

Reference
A class of fifth-grade students laughs as their teacher reads Jeanne Willis’s Dr. Xargle’s Book of Earthlets. Students are listening to the alien professor, Dr. Xargle, teach his pupils about Earthlets (human babies): “Earthlets are born without fangs. At first, they drink only milk, through a hole in their faces called a mouth. When they finish the milk, they are patted and squeezed so they won’t explode.” The fifth-grade class giggles at this outrageous lesson as Dr. Xargle continues to lecture. Students then begin sorting cards containing some of the alien professor’s “observations” of Earthlets. The teacher asks her students, “Which of Dr. Xargle’s comments are truly observations?” Students review their cards and realize that many of his comments are not observations but rather hilariously incorrect inferences. They re-sort their cards into two groups: observations and inferences. This amusing picture book and word sorting activity guide students into hands-on inquiry where they make observations about sealed mystery samples Dr. Xargle collected from Earth. Eventually students develop inferences about what the mystery samples might be. Through this exciting lesson, students construct their own understanding of scientific concepts as they cycle through the following phases: Engage, Explore, Explain, Elaborate, and Evaluate. Although Picture-Perfect Science Lessons is primarily a book for teaching science, reading comprehension strategies are embedded in each lesson. These essential strategies can be modeled throughout while keeping the focus of the lessons on science.

Use This Book Within Your Science Curriculum
We wrote Picture-Perfect Science Lessons to supplement, not replace, an existing science program. Although each lesson stands alone as a carefully planned learning cycle based on clearly defined science objectives, the lessons are intended to be integrated into a more complete unit of instruction in which concepts can be more fully developed. The lessons are not designed to be taught sequentially. We want you to use Picture-Perfect Science Lessons where appropriate within your school’s current science curriculum to support, enrich, and extend it. And we want you to adapt the lessons to fit
your school’s curriculum, your students’ needs, and your own teaching style.

Special Features

1. Ready-to-Use Lessons With Assessments

Each lesson contains engagement activities, hands-on explorations, student pages, suggestions for student and teacher explanations, opportunities for elaboration, assessment suggestions, and annotated bibliographies of more books to read on the topic. Assessments range from poster sessions with rubrics to teacher checkpoint labs to formal multiple choice and extended response quizzes.

2. Reading Comprehension Strategies

Reading comprehension strategies based on the book Strategies That Work (Harvey and Goudvis 2000) and specific activities to enhance comprehension are embedded throughout the lessons and clearly marked with an icon 📚. Chapter 2 describes how to model these strategies while reading aloud to students.

3. Standards-Based Objectives

All lesson objectives were adapted from National Science Education Standards (NRC 1996) and are clearly identified at the beginning of each lesson. Because we wrote Picture-Perfect Science Lessons for students in grades 3 though 6, we used two grade ranges of the Standards: K–4 and 5–8. Chapter 5 outlines the National Science Education Standards for those grade ranges and shows the correlation between the lessons and the Standards.

4. Science as Inquiry

As we said, the lessons in Picture-Perfect Science Lessons are structured as guided inquiries following the 5E Model. Guiding questions are embedded throughout each lesson and marked with an icon 🎨. The questioning process is the cornerstone of good teaching. A teacher who asks thoughtful questions arouses students’ curiosity, promotes critical-thinking skills, creates links between ideas, provides challenges, gets immediate feedback on student learning, and helps guide students through the inquiry process. Each lesson includes an “Inquiry Place,” a section at the end of the lesson that suggests ideas for developing open inquiries. Chapters 3 and 4 explore science as inquiry and the BSCS 5E Instructional Model.

References

Children’s Book Cited

Editors’ Note: Picture-Perfect Science Lessons builds on the texts of 38 children’s picture books to teach science. Some of these books feature animals that have been anthropomorphized—sheep crash a jeep, a hermit crab builds his house. While we recognize that many scientists and educators believe that personification, teleology, animism, and anthropomorphism promote misconceptions among young children, others believe that removing these elements would leave children’s literature severely underpopulated. Furthermore, backers of these techniques not only see little harm in their use but also argue that they facilitate learning.

Because Picture-Perfect Science Lessons specifically and carefully supports scientific inquiry—“The Changing Moon” lesson, for instance, teaches students how to weed out misconceptions by asking them to point out inaccurate depictions of the Moon—we, like our authors, feel the question remains open.
We would like to give special thanks to science consultant Carol Collins for sharing her expertise in teaching inquiry-based science, for giving us many wonderful opportunities to share Picture-Perfect Science Lessons with teachers, and for continuing to support and encourage our efforts.

We would also like to express our gratitude to language arts consultant Susan Livingston for opening our eyes to the power of modeling reading strategies in the content areas and for teaching us that every teacher is a reading teacher.

We appreciate the care and attention to detail given to this project by Claire Reinburg, Jennifer Horak, Betty Smith, and Linda Olliver at NSTA Press.

And these thank-yous as well:

- To Bill Robertson for reviewing the teacher background section for each lesson.
- To the Ohio Department of Education for funding our very first teacher workshop.
- To NSTA and Toyota Motor Corporation for giving us a jump start with the Toyota Tapestry Grant in 2002.
- To all the wonderful teachers and students of Mason City Schools for trying our lessons and giving us feedback for improvement.
- To the administration of Mason City Schools for supporting our efforts.
- To Nancy Landes at BSCS for helping us better understand the 5Es and guiding us with her advice.
- To Diana Hunn and Katie Kinnucan-Welsh for their help with our research study.
- To Patricia Quill and her students at Western Row Elementary for piloting our lessons in their classroom.
- To Krissy Hufnagel for sharing her expertise in teaching reading.
- To Jean Muetzel and Sil Bobinski, wonderful librarians at Western Row Elementary, for going to the ends of the Earth to find picture books for us.
- To Ray Bollhauer and John Odell for their legal and business advice.
- To Christopher Canyon for inspiring us with his beautiful artwork and for encouraging us with kind words.
- To Jeff Alt for advising us to keep calling, keep calling, keep calling ...
- To Jenni Davis for the opportunities to share Picture-Perfect Science Lessons with teachers.
- To Jodee Seibert with Heinemann Library for supplying us with books to preview.
● To John R. Meyer at North Carolina State University Department of Entomology and Don Koller and Mike Wright at Miami University of Ohio for having the “gall” to review our “Close Encounters” dichotomous key.

● To Linda Sutphin for reviewing “Close Encounters.”

● To Chris Lucas for proofreading sections of the book.

● To Amy Bleimund for sharing Seven Blind Mice with us.

● To Shirley Hudspeth and her class at Mason Intermediate School for trying out the turtle fortune-tellers.

● To Kim Rader and her class at Mason Intermediate School for their popcorn investigations.

● To Julie Wellbaum for her “instrumental help” with the “Sounds of Science” lesson.

● To Sheri Hill, John Hutton, Sandra Gross, and all the good people at the Blue Mana-teee Children’s Bookstore in Cincinnati for helping us in our search for fabulous picture books.

● To Michelle Gallite and Erica Poulton for help in “cleaning up” our “Oil Spill!” lesson, and to Mrs. Gallite’s third graders for their help with “The Perfect Pet” lesson.

● To Theresa Gould and the research staff at RiceTec for their advice on growing rice in the classroom.

● To Gerald Skoog for reviewing material in Chapter 11.

● To Keith Summerville at Drake University for his help in answering our questions about insects.

● To Patricia Eastin and her students at Evendale Elementary for trying out the “Batteries Included” lesson.

● To Kevin Gale and his students at Van Gorden Elementary and Patricia Quill and her students at Mason Intermediate School for trying out the “If I Built a Car” lesson.

● To our husbands, families, and friends for their moral support (and for keeping an eye on our kids!).

● And to our parents, who were our very first teachers.

The contributions of the following reviewers are also gratefully acknowledged: Mariam Jean Dreher, Nancy Landes, Christine Anne Royce, Carol Collins, Lisa Nyberg, Chris Pappas, and Ken Roy.
K

aren Ansberry is an elementary science curriculum leader and a former fifth- and sixth-grade science teacher at Mason City Schools, in Mason, Ohio. She has a bachelor of science in biology from Xavier University and a master of arts in teaching from Miami University. Karen lives in historic Lebanon, Ohio, with her husband, daughter, twin boys, two dogs, and two cats.

Emily Morgan is the science leader for the High AIMS Consortium in Cincinnati, Ohio. She is a former elementary science lab teacher at Mason City Schools in Mason, Ohio, and a seventh-grade science teacher at Northridge Local Schools in Dayton, Ohio. She has a bachelor of science in elementary education from Wright State University and a master of science in education from the University of Dayton. Emily lives in West Chester, Ohio, with her husband, son, dog, and two cats.

Karen and Emily, along with language arts consultant Susan Livingston, received a Toyota Tapestry grant for their Picture-Perfect Science grant proposal in 2002. Since then, they have enjoyed facilitating teacher workshops at elementary schools, universities, and professional conferences across the country. They are also the authors of More Picture-Perfect Science Lessons: Using Children’s Books to Guide Inquiry, K–4.
About the Picture-Perfect Science Program

The Picture-Perfect Science program originated from Emily Morgan’s and Karen Ansberry’s shared interest in using children’s literature to make science more engaging. In Emily’s 2001 master’s thesis study involving 350 of her third-grade science lab students at Western Row Elementary, she found that students who used science trade books instead of the textbook scored significantly higher on district science performance assessments than students who used the textbook only. Convinced of the benefits of using picture books to engage students in science inquiry and to increase science understanding, Karen and Emily began collaborating with Susan Livingston, the elementary language arts curriculum leader for the Mason City Schools in Ohio, in an effort to integrate literacy strategies into inquiry-based science lessons. They received grants from the Ohio Department of Education (2001) and Toyota Tapestry (2002) to train all third-grade through sixth-grade science teachers, and in 2003 they also trained seventh- and eighth-grade science teachers with district support. The program has been presented both locally and nationally, including at the National Science Teachers Association national conferences.

For more information on Picture-Perfect Science teacher workshops, go to www.pictureperfectscience.com.
Lessons by Grade

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Grade</th>
<th>Picture Books</th>
</tr>
</thead>
</table>
| 6 | 3–6 | Dr. Xargle’s Book of Earthlets
Seven Blind Mice |
| 7 | 3–4 | Seashells by the Seashore
A House for Hermit Crab |
| 8 | 3–6 | Rice Is Life
Rice |
| 9 | 5–6 | Popcorn! |
| 10 | 3–6 | White Owl, Barn Owl
Butternut Hollow Pond |
| 11 | 4–6 | What’s Eating You? Parasites—
The Inside Story
Weird Friends: Unlikely Allies in the Animal Kingdom |
| 12 | 3–4 | Turtle Watch
Turtle, Turtle, Watch Out! |
| 13 | 3–6 | Prince William
Oil Spill! |
| 14 | 3–4 | Sheep in a Jeep |
| 15 | 3–4 | Sound
The Remarkable Farkle McBride |
| 16 | 3–6 | Pancakes, Pancakes! |
| 17 | 3–6 | Rise the Moon
The Moon Book
Papa, Please Get the Moon for Me |
| 18 | 3–6 | Somewhere in the World Right Now |
| 19 | 3–6 | Erosion
Grand Canyon: A Trail Through Time |
| 20 | 5–6 | Imaginative Inventions
Girls Think of Everything: Stories of Ingenious Inventions by Women |
Activity-specific safety guidelines are highlighted throughout the lessons. For a more thorough discussion of safety procedures, see *The NSTA Ready-Reference Guide to Safer Science* or *Exploring Safely*. The National Science Teachers Association has also created a convenient *Safety in the Elementary Science Classroom* flipchart. This colorful and student-friendly safety resource can be hung on the wall for easy reference or a quick refresher.

Resources
Chemical Change Café

Description
Learners explore the differences between chemical and physical changes by observing a variety of changes in matter. Learners observe the chemical change of cooking pancakes and identify new menu items for the Chemical Change Café.

Suggested Grade Levels: 3–6

<table>
<thead>
<tr>
<th>Lesson Objectives</th>
<th>Connecting to the Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Standard A: Scientific Inquiry</td>
<td>Content Standard B: Physical Science</td>
</tr>
<tr>
<td>K–4: Use data (observations) to construct a reasonable explanation.</td>
<td>K–4: Understand that objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances.</td>
</tr>
<tr>
<td>5–8: Develop descriptions, explanations, and predictions using evidence.</td>
<td>5–8: Understand that substances react chemically in characteristic ways with other substances to form new substances with different characteristic properties.</td>
</tr>
</tbody>
</table>

Featured Picture Book

Title
Pancakes, Pancakes!

Author
Eric Carle

Illustrator
Eric Carle

Publisher
Aladdin

Year
2005

Genre
Story

Summary
By cutting and grinding the wheat for flour, Jack starts from scratch to help make his breakfast pancake.
Time Needed

This lesson will take several class periods. Suggested scheduling is as follows:

Day 1: **Engage** with changing paper, and **Explore** with Observing Changes in Matter lab stations

Day 2: **Explain** with Chemical Changes article, Frayer Model, and *Pancakes, Pancakes!* read aloud

Day 3: **Elaborate** with Chemical Change Café

Day 4: **Evaluate** with New Menu Items

Materials

For Changing Paper Demonstration

- Piece of paper
- Glass jar
- Matches (for teacher use only)

For Observing Changes in Matter Lab Stations

SAFETY

Station 1: Before this activity, check with your school nurse to see if any students have latex allergies. Students who are allergic to latex should not do the activity at Station 1.

Station 3: Before this activity, demonstrate for students the safe way to smell any chemical by “wafting.”

- A red plastic cup and a green plastic cup with the bottoms taped together (1 per team)
- Station 1
 - 7 pieces of bubble wrap
- Station 2
 - Small cup of vinegar
 - Small cup of baking soda
 - Wax paper (1 piece per group)
 - Spoon
 - Pipette
- Station 3
 - Cup of fresh milk covered with foil (labeled “fresh”)
 - Cup of sour milk covered with foil (labeled “sour”)
- Station 4
 - Lump of clay
- Station 5
 - New steel wool
 - Rusted steel wool in water (leave in water for at least 24 hours)
- Station 6
 - Resealable plastic sandwich bags (1 per team)
 - 2 teaspoons
 - 25 ml graduated cylinder
 - Small cup of cream of tartar
 - Small cup of baking soda
 - Room temperature water
 - 3 thermometers (labeled “1,” “2,” and “3”)
- Station 7
 - Two 25 ml graduated cylinders
 - Clear plastic cups (1 per group)
 - Cup of whole milk
 - Cup of vinegar
For Chemical Change Café

SAFETY

Before using this activity, check your school's policy on eating as part of a science lab activity. Some schools forbid it, and commercial labs can be fined for even the appearance of eating. Make sure your students know they should never taste anything in a lab activity. *Exploring Safely: A Guide for Elementary Teachers* recommends, “Nothing should be tasted or eaten as part of science lab work” (Kwan and Texley 2002). Also check with your school nurse to see if any students have dietary restrictions.

- Box of “just add water” pancake mix (1 per group)
- Metric measuring cups for food preparation (1 per group)
- Water
- Wire whisks or spoons (1 per group)
- Mixing bowls (1 per group)
- Electric griddle or hot plate with a pancake pan (for teacher use only)
- Spatula
- Paper plates
- Forks
- Bottles of pancake syrup

Student Pages

- Observing Changes in Matter
- Chemical Changes article
- Chemical Change Frayer Model
- Chemical Change Café Menu
- New Menu Items

Background

A chemical change occurs when a substance changes into a new substance with new properties. For example, when you add baking soda to vinegar, a gas bubbles up. The gas, carbon dioxide, has different properties from the baking soda and the vinegar. This is a chemical reaction, which is just another way of saying chemical change. The opposite of a chemical change is a physical change. A physical change is a change in matter that might change the form or appearance of a substance but does not produce any new substances. For example, when you chop a piece of wood, its appearance changes, but it is not a new substance. It is still wood. When you put water in the freezer, it turns to ice, but it is still water, just in a different form. Observing any of the following when you combine two or more substances can give you clues that a chemical change has occurred:

- Gas is produced (bubbles).
- Temperature changes.
Engage

Changing Paper
Show students a piece of blank paper. Ask

? What can I do to change this piece of paper?

Students may suggest folding it, rolling it up, cutting it, tearing it, writing on it, and crumpling it up into a ball. Try all of the students’ suggestions, and after each one, ask

? Is it still paper? (yes)

Then roll up the piece of paper, and put it in a large glass jar. Strike a match, light the paper on fire, and let the students watch it burn. After the paper has finished burning, ask students

? Is it still paper? How do you know? (No, it is a different substance with new properties.)

Explore

Observing Changes in Matter
Lab Stations
In advance, set up seven separate locations in the room as lab stations. Number each station, and supply all of the necessary materials

- Odor changes.
- Color changes.
- A solid forms when two liquids are combined (precipitate).
- Light is emitted.

Although any of these phenomena may be evidence of a chemical change after combining substances, sometimes a physical change can have similar results. For example, boiling water causes bubbles to appear. The bubbles contain water vapor—liquid water that has physically changed into a gas—so no new substance is produced. Another example is mixing paint. Although the resulting color may be different from the original colors, the chemical properties of the paint are the same. No new substance has been produced—it’s still paint!

A common misconception about distinguishing between physical and chemical changes is that with a physical change, you can “change it back.” That is not always true. For example, after you tear a piece of paper into a thousand pieces, you can’t return it to its original form. But tearing paper is a physical change because the small pieces are still the same substance as the whole piece of paper was. And in fact, there are some chemical changes that can be reversed.

So the best defining characteristic of a chemical change is the presence of a new substance or substances that are entirely different from the starting substances. Sometimes it is really difficult to distinguish between a chemical change and a physical change (in some cases scientists don’t even agree!), but the important idea is that matter can be changed in different ways.

The National Science Education Standards state that students in grades K–4 should understand that objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Students in grades 5–8 should understand that substances react chemically with other substances to form new substances with different characteristic properties. It can be tempting to introduce atoms and molecules to explain these changes, but the Standards suggest that this terminology is premature for students in grades 5–8 and can distract from the understanding that can be gained from merely observing and describing such changes.
for the Observing Changes in Matter activity to be done at that station. Put students in groups of two to four, and give each student the Observing Changes in Matter student page. Tell students they will have a red-green cup to signal the teacher. While they are working, they should keep the green side on top. If they need help, or if they are finished and ready to move to the next station, they should put the red side on top.

Each team will begin at a different station and will visit all seven stations during the lab. Students will complete the activities at each station and record their observations on the student page. They will learn what “P” and “C” mean later. Each member of the group is responsible for writing responses. When all teams are finished (all red cups are up), students may rotate to the next numbered station.

Explain

Chemical Changes Article

Pass out the Chemical Changes article. Tell students this article will help them learn more about the changes they observed. Have students take turns reading aloud from the article. While one person reads a paragraph, the other listens and makes comments (“I think ...”), asks questions (“I wonder ...”), or shares new learnings (“I didn’t know ...”). Students can use the information they learn from this article on the Chemical Change Frayer Model student page.

Frayer Model

The Frayer Model is a tool to help students develop their vocabularies by studying concepts in a relational manner. Students write a particular word in the middle of a box and proceed to list characteristics, examples, non-examples, and a definition in other quadrants of the box. They can proceed by using the examples and characteristics to help them formulate a definition or, conversely, by using the definition to determine examples and nonexamples.

In this case, have students use the preceding article to formulate a definition for “chemical change” in their own words in the top left box of the Chemical Change Frayer Model. Then have students write some characteristics of chemical changes in the top right box. Have students work in pairs to come up with exam-
Physical and Chemical Changes in *Pancakes, Pancakes*!

<table>
<thead>
<tr>
<th>Physical Changes</th>
<th>Chemical Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting wheat</td>
<td>Burning wood for a fire</td>
</tr>
<tr>
<td>Separating grain from chaff</td>
<td>Cooking the pancake</td>
</tr>
<tr>
<td>Grinding wheat</td>
<td></td>
</tr>
<tr>
<td>Squirting milk in the pail</td>
<td></td>
</tr>
<tr>
<td>Churning butter</td>
<td></td>
</tr>
<tr>
<td>Melting butter</td>
<td></td>
</tr>
<tr>
<td>Chopping wood</td>
<td></td>
</tr>
<tr>
<td>Breaking an egg</td>
<td></td>
</tr>
<tr>
<td>Stirring the batter</td>
<td></td>
</tr>
</tbody>
</table>

Examples and nonexamples from their own lives. As you observe students working, encourage them to use their previous experiences as a basis for their chemical change examples. Students can then present and explain their models to other groups. As they present to each other, informally assess their understanding of the concept and clarify as necessary.

After the reading and the Frayer Model activity, point out that with a chemical change, the change happens without any external assistance. For example, water can get hot in a physical change if there is an external source of heat. Materials can change color in a physical change if there is an external source of color—paint, for example.

Refer back to the paper you used in the engage phase. Ask students:

? Which of the changes that I made to the paper demonstrated a chemical change? Why? (Burning the paper was a chemical change because when the change was complete, there was a new substance formed: black ash.)

With this new information students have learned from the article, have them go back to the Observing Changes in Matter student page they completed in the Explore phase and identify each change as physical or chemical by circling “P” or “C.”

Answers

The physical changes in the Observing Changes in Matter exploration were:

- Station 1: Popping the bubble wrap
- Station 4: Forming clay into different shapes

The chemical changes in the Observing Changes in Matter exploration were:

- Station 2: Vinegar and baking soda reaction (gas bubbles produced)
- Station 3: Souring milk (change in odor)
- Station 5: Rusted steel wool (change in color and odor)
- Station 6: Cream of tartar, baking soda, and water reaction (change in temperature)
- Station 7: Vinegar and milk reaction (precipitate formed)
In Safety in the Elementary (K–6) Science Classroom: Second Edition, the American Chemical Society (2001) gives the following safety rules for working with hot plates:

1. When working around a heat source, tie back long hair and secure loose clothing.
2. The area surrounding a heat source should be clean and have no combustible materials nearby.
3. When using a hot plate, locate it so that a child cannot pull it off the worktop or trip over the power cord.
4. Never leave the room while the hot plate is plugged in, whether or not it is in use; never allow students near an in-use hot plate if the teacher is not immediately beside the students.
5. Be certain that hot plates have been unplugged and are cool before handling. Check for residual heat by placing a few drops of water on the hot plate surface.

In addition, read the safety box included in the Materials List for the Chemical Change Café.

Explain

Pancakes, Pancakes!

Introduce the author and illustrator of Pancakes, Pancakes! Ask students if they have read any other books by Eric Carle (information about him can be found at www.eric-carle.com).

Determining Importance

Tell students that as you read the story aloud, they should listen for examples of chemical and physical changes that occur in the story. Have students signal (raise their hands) when they hear examples. Have them classify the change as chemical or physical and provide justification.

Elaborate

Chemical Change Café

The day after reading Pancakes, Pancakes! convert your classroom into the Chemical Change Café. Set up a hot plate with a pancake pan or an electric griddle for your use only. Locate the cooking area away from any high traffic areas in your classroom. Provide a box of “just add water” pancake mix, metric measuring cup, spoon or whisk, and container of water for each table of students.

Greet students at the door, divide them into groups, and distribute the menus. All supplies should be on the desks, and students...
will follow directions on the menu to make the batter. Invite groups to bring their prepared batter to the cooking area, and they can observe changes as you cook the pancakes according to the package directions. On the menus, students should draw and describe the pancakes before and after they are cooked and explain why cooking pancakes is a chemical change.

Student Procedure for Chemical Change Café (Making Pancakes)

- Please mix 250 ml of pancake mix with 175 ml of water and stir until smooth.
- Please raise your hand to notify the chef that you are ready to have your batter cooked.
- Watch as the batter is changed into a light and fluffy pancake.
- Add a little syrup.
- Enjoy!

Evaluate

New Menu Items

As a final evaluation of student understanding of chemical versus physical changes, have students complete the New Menu Items student page.

The following items can be added to the Chemical Change Café menu because they are turned into new substances with new properties:

1. Toast
2. Scrambled eggs
3. Buttermilk biscuits
4. Cottage cheese
5. Toasted marshmallows

The other items cannot be served at the Chemical Change Café because they undergo only physical changes in their preparation.
Inquiry Place

Have students brainstorm testable questions such as

- How does temperature affect the rate of a chemical change?
- Will steel wool rust faster in water, salt water, or vinegar?
- How can you make a sugar cube undergo a physical change? A chemical change?

Have students select a question to investigate as a class, or groups of students can vote on the question they want to investigate as teams. After they make their predictions, they can design an experiment to test their predictions. Students can present their findings at a poster session.

More Books to Read

Summary: Ms. Frizzle’s class takes the Magic School Bus to the local bakery to find out about the chemistry of baking.

Summary: This book for grades 5–7 describes chemical changes and highlights some of the commercial and consumer products that result from chemical changes, such as plastics and dyes.

Summary: This book for grades 5–7 describes the physical changes of matter, including melting, freezing, suspensions, boiling, and condensing.

References

Observing Changes in Matter

Follow the directions below and record your observations at each station. Use all of your senses, except taste, to make your observations. You will decide whether each change is physical (P) or chemical (C) later in this lesson.

Station 1

- Observe the bubble wrap. Record your observations.

- Pop the bubbles with your fingers.
- Observe the bubble wrap again. How has it changed?

Station 2

- Observe the cup of baking soda and the cup of vinegar, and record your observations.

- Put a small spoonful of baking soda on the wax paper.
- Put 5 drops of vinegar on the baking soda.
- Observe what is on the wax paper. How has it changed?
Observing Changes in Matter cont.

Station 3 P or C

- Take the foil off the fresh milk and observe.
- Smell the fresh milk by “wafting.” Put the foil back on.

__
__

- Take the foil off the sour milk and observe.
- Smell the sour milk by “wafting.” Put the foil back on.
- How has the milk changed?

__
__

Station 4 P or C

- Observe the clay, and record your observations.

__
__

- Form the clay into a different shape.
- Observe the clay again. How has it changed?

__
__

Name: ________________________________
Station 5

P or C

- Observe the new steel wool, and record your observations.

- Observe the steel wool that has been in water.
- Describe the differences between the new steel wool and the wet steel wool.

Station 6

P or C

- Put 1 teaspoon of cream of tartar and 1 teaspoon of baking soda in a sandwich bag.
- Observe the cream of tartar and baking soda.
- Record the temperature of the mixture with thermometer 1.

- Observe the water in the cup.
- Record its temperature with thermometer 2.

- Add 10 ml of water to the cream of tartar and baking soda mixture in the sandwich bag.
- Feel the outside of the bag.
Observing Changes in Matter cont.

- Record the temperature of the “stuff” inside the bag with thermometer 3.

- How have the water and cream of tartar and baking soda changed?

Station 7 P or C

- Observe the milk, and record your observations.

- Observe the vinegar, and record your observations.

- Pour 20 ml of milk into a clear plastic cup.
- Pour 10 ml of vinegar into the milk, stir once, and let it sit for 1 min.
- Observe the “stuff” in the cup. How have the milk and vinegar changed?
Changing Matter
Every day we see changes in the matter around us. Sometimes there is a change in the appearance of matter and other times the change results in an entirely new substance.

Chemical Changes
A chemical change is a change in matter that produces new substances. For example, when a piece of wood is burned, it is no longer wood. It is changed into an entirely new substance with new properties. The wood changes from a hard solid into various gases, smoke, and a pile of ash. When cake batter is cooked, the ingredients form a new substance with a different smell, color, texture, and taste.

Physical Changes
The opposite of a chemical change is a physical change. A physical change is a change in matter that might change the form or appearance of a substance, but does not produce any new substances. For example, when you tear a piece of paper, its appearance changes, but it is not a new substance. It is still paper. When you put water in the freezer, it turns to ice, but it is still water, just in a different form.

Evidence of a Chemical Change
You can use your senses to detect chemical changes. Here are some characteristics that can help you determine if a chemical change has occurred:

- Gas produced (bubbles)
- Change in temperature
- Change in odor
- Change in color
- A solid formed when combining two liquids (precipitate)
- Light emitted

Any one of these characteristics is evidence that a chemical change has occurred. But sometimes a physical change can have similar results. The key characteristic of a chemical change is the presence of a new substance or substances that are entirely different from the starting substances.
Chemical Change

Frayer Model

<table>
<thead>
<tr>
<th>Definition</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chemical Change

Examples

Nonexamples
Is cooking pancakes a physical or chemical change? What is your evidence?

__ ...
__
Today’s Special

Pancakes
- Please mix **250 ml of pancake mix** with **175 ml of water** and stir until smooth.
- Please raise your hand to notify the chef that you are ready to have your batter cooked.
- Watch as the batter is changed into a light and fluffy pancake.
- Add a little syrup.
- Enjoy!

Draw and describe the pancakes before cooking.

Draw and describe the pancakes after cooking.
New Menu Items

The Chemical Change Café would like to add some new items to the menu. Only food that has been prepared through a chemical change can be featured on our menu. Put a check mark next to each item that can be added to the menu at the Chemical Change Café.

❑ 1 Toast

We begin with a plain white piece of bread and heat it until it turns brown and produces a delightful smell.

Is making toast a chemical change? Why or why not?

__
__

❑ 2 Orange Juice

Lovely fresh oranges are hand squeezed until the delicious juice drips into your glass.

Is making orange juice a chemical change? Why or why not?

__
__

❑ 3 Scrambled Eggs

Grade A eggs are cooked until they are light, fluffy, and yellow.

Is making scrambled eggs a chemical change? Why or why not?

__
__
We begin with strawberries, ice, sugar, and milk. We blend them together to make a thick, delicious drink.

Is making a strawberry smoothie a chemical change? Why or why not?

We mix together the finest fresh nuts and dried fruits to create this tasty blend.

Is making trail mix a chemical change? Why or why not?

Creamy buttermilk, baking powder, flour, butter, and salt are mixed together and baked until gas bubbles cause them to rise. The batter turns into flaky, golden brown biscuits. The aroma of the baked biscuits is delightful.

Is making buttermilk biscuits a chemical change? Why or why not?
New Menu Items cont.

❑ 7 Orange-sicles

We freeze our finest fresh orange juice until the orange liquid becomes a tasty, frozen solid.

Is making orange-sicles a chemical change? Why or why not?

__
__

❑ 8 Cottage Cheese

Fresh milk is combined with special enzymes until the milk becomes thick and clumpy with a completely new taste and smell.

Is making cottage cheese a chemical change? Why or why not?

__
__

❑ 9 Fruit Salad

Fresh pineapple, strawberries, kiwi, and blueberries are sliced and mixed together to make this sweet treat.

Is making fruit salad a chemical change? Why or why not?

__
__

❑ 10 Toasted Marshmallows

Fluffy white marshmallows are toasted over an open flame until they begin to turn golden brown and smell heavenly.

Is making toasted marshmallows a chemical change? Why or why not?

__
__
Index

Page numbers in **boldface** type refer to figures or tables. Those followed by “n” refer to footnotes.

A
A Cool Drink of Water, 361, 362, 364
A House for Hermit Crab, 55, 56, 60
Adaptations, 139
of parasites, 143
Animal rescue, 181–182, 187–189
Ant, Ant, Ant! (An Insect Chant), 307, 308, 315, 316
Anthropomorphism, xii
Anticipation guides, 14, 393
for “Bugs!” lesson, 310, 314, 318
for “Name That Shell!” lesson, 58–59, 64
for “Rice Is Life” lesson, 76, 82
for “The Changing Moon” lesson, 252, 257
Assembly line design, 378–380, 387
Assessment, 393
Atomic structure, 39, 43
Automobile design, 373–391

B
Barn owls, 119–136
“Batteries Included” lesson, 325–333
background for, 327–328
BSCS 5E model for, 329–333
description of, 325
Inquiry Place for, 333
materials for, 326–327
objectives of, 325
picture books for, 325
safety rules for, 327, 328, 330, 332
student pages for, 327, 335–344
time needed for, 326
Biological Sciences Curriculum Study (BSCS) 5E Instructional Model
Bubble, Bubble, 4
Bugs Are Insects, 307, 308, 312, 313
“Bugs!” lesson, 307–316
background for, 308–309
BSCS 5E model for, 310–316
description of, 307
Inquiry Place for, 316
materials for, 308
objectives of, 307
picture books for, 307
safety rules for, 311
student pages for, 308, 318–323
time needed for, 308
Butternut Hollow Pond, 5, 119, 120, 124–126, 131–134

C
Car design, 373–391
Checkpoint labs, 20–22, 393
for “Batteries Included” lesson, 332, 340–342
for “Brainstorms” lesson, 296, 304–306
for “Grand Canyon” lesson, 279–280, 285–287

for “Oil Spill!” lesson, 181, 184–186
for “Sheep in a Jeep” lesson, 194–195, 201–207
for “What’s Poppin’? lesson, 96, 97, 98–102, 105–116
“Chemical Change Café” lesson, 227–235
background for, 229–230
BSCS 5E model for, 230–234
description of, 227
Inquiry Place for, 235
materials for, 228–229
objectives of, 227
picture book for, 227
safety rules for, 228, 229, 231, 233
student pages for, 229, 236–246
time needed for, 228
Children’s Book Council, 3
Chunking, 14, 393
for “Grand Canyon” lesson, 280
“Close Encounters of the Symbiotic Kind” lesson, 5, 18, 137–145
background for, 139
BSCS 5E model for, 140–144
description of, 137
Inquiry Place for, 145
materials for, 138
objectives of, 137
picture books for, 137
student pages for, 139, 146–160
time needed for, 138
Cloze paragraph, 14, 393
for “Batteries Included” lesson, 331–332
Conservation of water, 361–371
Constructivism, 393–394
Cooking activity, 233–234, 242–246
D

“Day and Night” lesson, 263–269
 background for, 264–265
 BSCS 5E model for, 265–269
 description of, 265
 Inquiry Place for, 269
 materials for, 264
 objectives of, 265
 picture book for, 263
 safety rules for, 267
 student pages for, 264
 time needed for, 264

Design process
 “Brainstorms: From Idea to Invention” lesson, 291–306
 “If I Built a Car” lesson, 373–381
Determining importance, 13
 for “Brainstorms” lesson, 294–295
 for “Bugs!” lesson, 312
 for “Chemical Change Café” lesson, 233
 for “Close Encounters of the Symbiotic Kind” lesson, 143–144
 for “Day and Night” lesson, 267
 for “Grand Canyon” lesson, 281
 for “Mystery Pellets” lesson, 125
 for “Oil Spill!” lesson, 180–181
 for “Rice Is Life” lesson, 79
 for “Sheep in a Jeep” lesson, 194
 for “Sounds of Science” lesson, 219–220
 for “The Changing Moon” lesson, 252, 253
 for “The Secrets of Flight” lesson, 351
 for “Turtle Hurdles” lesson, 164–166
 for “What’s Poppin’? lesson, 100–101

Dichotomous keys
 for “Bugs!” lesson, 314, 321–322
 for “Close Encounters of the Symbiotic Kind” lesson, 140–141
 for “Name That Shell!” lesson, 59–61, 65, 68

Down the Drain: Conserving Water, 361, 362, 364, 366
 “Down the Drain” lesson, 361–366
 background for, 362
 BSCS 5E model for, 363–366
 description of, 361
 Inquiry Place for, 366
 materials for, 362
 objectives of, 361
 picture books for, 361
 student pages for, 362
 time needed for, 362

Dr. Xargle’s Book of Earthlets, xi, 4, 37, 38, 40–41
 Dual-purpose books, 5, 394

E

Earthlets as Explained by Professor Xargle, 37, 40
 “Earthlets” lesson, 33, 37–45
 background for, 39
 BSCS 5E model for, 40–45
 description of, 37
 Inquiry Place for, 45
 materials for, 38
 objectives of, 37
 picture books for, 37
 student pages for, 39
 time needed for, 38

Earth’s rotation, 263–275
 Electrical circuits, 325–344
 Electrical Circuits, 325m326
 Energy balls, 325–329, 335
 Engineering, 375–377, 383–384
 Entomology, 307–323
 Erosion, 277–289
 Erosion, 277, 280–281
 Exxon Valdez oil spill, 179

F

Fiction books, 5–6
 5E instructional model. See Biological Sciences Curriculum Study 5E Instructional Model
 Flight, 345–360
 Food chains and food webs, 121, 124–127, 133–136
 Frayer model, 14, 394–395
 Chemical Change, 231, 241
 Inference, 41–42, 48

G

Genre of picture books, 4–5, 395
 Girls Think of Everything: Stories of Ingenious Inventions by Women, 291, 292, 294, 296
 Glossary, 393–398
 Grand Canyon: A Trail Through Time, 277, 281–282
 “Grand Canyon” lesson, 277–283
 background for, 278–279
 BSCS 5E model for, 279–282
 description of, 277
 Inquiry Place for, 283
 materials for, 278
 objectives of, 277
 picture books for, 277
 student pages for, 278
 time needed for, 278

Guided inquiry activity, 20, 21, 395

H

Household water use, 361–371
 How People Learn, 18
 How People Learned to Fly, 345, 346, 348, 350
 Hybrid books, 5

I

I Wonder/I Learned charts, 14, 395
 for “Turtle Hurdles” lesson, 164, 167
 for “What’s Poppin’? lesson, 98
If I Built a Car, 373, 374, 375
 “If I Built a Car” lesson, 373–380
 background for, 374–375
 BSCS 5E model for, 375–380
 description of, 373
 Inquiry Place for, 380
 materials for, 374
 objectives of, 373
 picture books for, 373
 student pages for, 374, 382–391
 time needed for, 374

Imaginative Inventions, 291, 292, 294
 Inferences vs. observations, 37–54
 Inferring, 13
 for “Brainstorms” lesson, 294
 for “Close Encounters of the Symbiotic Kind” lesson, 144
for “Down the Drain” lesson, 364
for “Earthlets” lesson, 40
for “Mystery Pellets” lesson, 122, 124–125
for “Name That Shell!” lesson, 60
for “Oil Spill!” lesson, 180
for “Rice Is Life” lesson, 75
for “Turtle Hurdles” lesson, 164

Informational books

dual-purpose, 5, 394
fiction books and, 5–6
improving students’ comprehension of, 6
narrative, 5, 396
nonnarrative, 4–5, 396
using features of nonfiction, 15

Inquiry, xii, 17–25
benefits of, 18–19
checkpoint labs in, 20–22
essential features of, 17, 18
guided, 20, 21, 395
misconceptions about, 20
open, 20, 21, 396–397
selecting questions for, 19–20
structured, 397–398
variations within, 20

Inquiry and the National Science Education Standards, 19

Inquiry Place, 20, 22–25

Insects, 307–323

Inventing the Automobile, 373, 374, 376, 378

Inventions
“Brainstorms: From Idea to Invention” lesson, 291–306
“If I Built a Car” lesson, 373–391

Journal
for “Rice Is Life” lesson, 76–77, 84–88
for “The Changing Moon” lesson, 250–251, 255

Kids’ Paper Airplane Book, 345, 346, 350, 351, 352

L
Learning cycle, 29, 29, 395–396

Literacy, 2

M
Making connections, 12–13
for “Batteries Included” lesson, 332
for “Bugs!” lesson, 310
for “Close Encounters of the Symbiotic Kind” lesson, 144
for “Day and Night” lesson, 265
for “Earthlets” lesson, 44
for “If I Built a Car” lesson, 375–376
Making music, 217–226
Mass production, 377–378, 386
Misconceptions, 2–3, 396
about inquiry-based science, 20
Model T, 380, 390–391
Modeling
for “Day and Night” lesson, 265–267
for “The Changing Moon” lesson, 251–252
Moon phases, 3, 23–24, 247–262
Motion and force, 191–215
“Mystery Pellets” lesson, 5, 119–128
background for, 120–121
BSCS SE model for, 122–127
description of, 119
Inquiry Place for, 128
materials for, 120
objectives of, 119
picture books for, 119
safety rules for, 122
student pages for, 120, 129–136
time needed for, 120

O-W-L charts, 14, 397

O-W-L charts
for “Close Encounters of the Symbiotic Kind” lesson, 140, 146
for “Mystery Pellets” lesson, 122, 129
for “Name That Shell!” lesson, 58, 62

Pairs read, 14, 397
for “Chemical Change Café” lesson, 231
for “Close Encounters of the Symbiotic Kind” lesson, 141–142
for “If I Built a Car” lesson, 377
for “Rice Is Life” lesson, 76
for “Sheep in a Jeep” lesson, 196

Papa, Please Get the Moon for Me, 3, 247, 248, 253, 259–260

Paper airplane flight, 345–360

Personal vocabulary list, 14, 397
Peterson First Guide to Insects of North America, 316

Physical and chemical changes, 227–246

Picture books, 1–6
 benefits for upper elementary students, 3
 to enhance comprehension, 15–16
 genre of, 4–5, 395
 pairing fiction and nonfiction texts, 5–6
 scientific inaccuracies in, 3
 selection of, 3–4
 sources for, 4

Popcorn, 95–117

Popcorn!, 95, 96

Posters
 for “Bugs!” lesson, 316, 323
 for “Mystery Pellets” lesson, 122
 for “Sheep in a Jeep” lesson, 196, 207
 for “What’s Poppin’” lesson, 102–103, 117

Preconceptions of students, 18–19

Prince William, 2, 177, 178, 180

Q

Questioning, 13
 for “Day and Night” lesson, 265
 for “If I Built a Car” lesson, 377
 for “Oil Spill!” lesson, 180
 for “The Changing Moon” lesson, 249
 for “Turtle Hurdles” lesson, 164

R

Reading aloud, 9–16, 397
 for “Batteries Included” lesson, 331
 for “Brainstorms” lesson, 294
 for “Earthlets” lesson, 40
 rationale for, 9–10
 for “Rice Is Life” lesson, 74
 for “Sheep in a Jeep” lesson, 194
 for “Sounds of Science” lesson, 221
 for “The Changing Moon” lesson, 249, 251
 tips for, 10–12
 for “Turtle Hurdles” lesson, 164
 for “What’s Poppin’” lesson, 98

Reading comprehension
 enhancement tools, 13–16
 anticipation guides, 14, 393
 chunking, 14, 393
 cloze paragraph, 14, 393
 pairs read, 14, 397
 rereading, 14, 397
 sketch to stretch, 15, 397
 stop and jot, 15, 397
 turn and talk, 15, 398
 using features of nonfiction, 15, 394
 visual representations, 14
 word sorts, 15, 398

Reading comprehension strategies, 6, 12–13, 397
 determining importance, 13
 inferring, 13
 making connections, 12–13
 questioning, 13
 synthesizing, 13
 visualizing, 13

Reading skills, 2, 9
 Rereading, 14, 397
 for “Oil Spill!” lesson, 181
 Rice, 5, 71, 72

Rice Is Life, 4, 5, 71, 72, 75
 “Rice Is Life” lesson, 5, 71–81
 background for, 73
 BSCS 5E model for, 74–81
 description of, 71
 Inquiry Place for, 81
 materials for, 72
 objectives of, 71
 picture books for, 71
 student pages for, 73, 82–93
 time needed for, 72

Rise the Moon, 247, 248

S

Safety rules
 for “Batteries Included” lesson, 327, 328, 330, 332
 for “Bugs!” lesson, 311
 for “Chemical Change Café” lesson, 228, 229, 231, 233
 for “Day and Night” lesson, 267
 for “Mystery Pellets” lesson, 122
 for “The Secrets of Flight” lesson, 346
 for “What’s Poppin’” lesson, 99–100, 101, 109, 110

Science and Children, 3

Science concepts, 2

Scientific misconceptions, 2–3, 396

Scoring rubrics
 for animal rescue letter, 182
 for design a plant experiment, 80
 for Grand Canyon brochure, 282
 for insect poster, 323
 for instrument presentations, 222
 for making a picture book, 268
 for popcorn poster session, 103
 for turtle letter, 167

Sea turtles, 161–176

Seashell classification, 55–70

Seashells by the Seashore, 55, 58

Semantic maps, 14, 397
 for “Rice Is Life” lesson, 74–75
 template for, 74
 for “The Secrets of Flight” lesson, 348, 349

Seven Blind Mice, 37, 38, 44

Sheep in a Jeep, 191, 192, 194
 “Sheep in a Jeep” lesson, 20, 191–199
 background for, 192
 BSCS 5E model for, 194–198
 description of, 191
 Inquiry Place for, 199
 materials for, 192
 objectives of, 191
 picture book for, 191
 student pages for, 192, 200–215
 time needed for, 192

Sketch to stretch, 15, 397
 for “Rice Is Life” lesson, 75

Somewhere in the World Right Now, 263, 264, 270–272

Sound, 217, 218

402
“Sounds of Science” lesson, 217–223
background for, 218–219
BSCS 5E model for, 219–222
description of, 217
Inquiry Place for, 223
materials for, 218
objectives of, 217
picture books for, 217
student pages for, 218, 224–226
time needed for, 218
Stop and jot, 15, 397
for “Rice Is Life” lesson, 75
Storybooks, 4, 397
dual-purpose, 5, 394
Strategies That Work, xii, 3, 12, 397
Straw instruments, 218–221
Structured inquiry activity, 397–398
Sun position, 263–275
Symbiotic relationships, 137–160
Synthesizing, 13
for “Down the Drain” lesson, 364
for “Rice Is Life” lesson, 75
for “Sounds of Science” lesson, 222

T
T-charts, 14, 398
for “Bugs!” lesson, 313
for “Earthlets” lesson, 40
for “Rice Is Life” lesson, 80
for “Sheep in a Jeep” lesson, 194
for “Turtle Hurdles” lesson, 166–167, 175
That Magnetic Dog, 4
“The Changing Moon” lesson, xiin, 3, 23–24, 247–253
background for, 248–249
BSCS 5E model for, 249–253
description of, 247
Inquiry Place for, 253
materials for, 248
objectives of, 247
picture books for, 247
student pages for, 248, 255–262
time needed for, 248
The Moon Book, 247, 248, 252, 269
The Perfect Pet, 307, 308, 312, 314

The Remarkable Farkle McBride, 217, 218, 222
“The Secrets of Flight” lesson, 345–352
background for, 347
BSCS 5E model for, 348–352
description of, 345
Inquiry Place for, 352
materials for, 346
objectives of, 345
picture books for, 345
safety rules for, 346
student pages for, 346, 354–360
time needed for, 346
The Sun Is My Favorite Star, 269
Too Many Toys, 325, 326, 332
Turn and talk, 15, 398
for “Bugs!” lesson, 310
for “Close Encounters of the Symbiotic Kind” lesson, 143
for “Oil Spill!” lesson, 180
Turtle, Turtle, Watch Out!, 161, 162, 163, 164–166, 173
“Turtle Hurdles” lesson, 161–168
background for, 163
BSCS 5E model for, 164–167
description of, 161
Inquiry Place for, 168
materials for, 162
objectives of, 161
picture books for, 161
student pages for, 162, 169–176
time needed for, 162
Turtle Watch, 161, 162, 163

U
Using features of nonfiction, 15, 394
for “Down the Drain” lesson, 364
for “Grand Canyon” lesson, 279
for “Sounds of Science” lesson, 219

V
Visual representations, 14
Visualizing, 13
for “If I Built a Car” lesson, 376
for “Mystery Pellets” lesson, 125

W
Water use and conservation, 361–371
Weathering and erosion, 277–289
Weird Friends: Unlikely Allies in the Animal Kingdom, 137, 138, 144, 152
What’s Eating You? Parasites—The Inside Story, 137, 138, 144
“What’s Poppin’? lesson, 95–103
background for, 97
BSCS 5E model for, 98–102
description of, 95
Inquiry Place for, 103
materials for, 96–97
objectives of, 95
picture book for, 95
safety rules for, 99–100, 101, 109, 110
student pages for, 97, 105–117
time needed for, 96
White Owl, Barn Owl, 5, 119, 120, 122
Word sorts, 15, 398
for “Close Encounters of the Symbiotic Kind” lesson, 141–142, 149–150
for “Earthlets” lesson, 40, 47
for “Mystery Pellets” lesson, 125–127, 131–132
for “Sheep in a Jeep” lesson, 196–197, 208–209
Writing a letter
for “Oil Spill!” lesson, 182, 189
for “Turtle Hurdles” lesson, 167, 176

Y
Yellow Brick Roads: Shared and Guided Paths to Independent Reading 4–12, 9