MS.Weather and Climate

Students who demonstrate understanding can:

MS-ESS2-5. Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions. [Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation).] [Assessment Boundary: Does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.]

MS-ESS2-6. Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. [Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.] [Assessment Boundary: Does not include the dynamics of the Coriolis effect.]

MS-ESS3-5. Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century. [Clarification Statement: Examples of factors include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence can include tables, graphs, and maps of global and regional temperatures, atmospheric levels of gases such as carbon dioxide and methane, and the rates of human activities. Emphasis is on the major role that human activities play in causing the rise in global temperatures.]

The performance expectations above were developed using the following elements from the NRC document, A Framework for K-12 Science Education:

Science and Engineering Practices

Asking Questions and Defining Problems

- Asking questions and defining problems in 6–8 builds on K–5 experiences and progresses to specifying relationships between variables, clarify arguments and models.
 - Ask questions to identify and clarify evidence of an argument. (MS-ESS3-5)

Developing and Using Models

- Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.
 - Develop and use a model to describe phenomena. (MS-ESS2-6)

Planning and Carrying Out Investigations

- Planning and carrying out investigations in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or solutions.
 - Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions. (MS-ESS2-5)

Disciplinary Core Ideas

ESS2.C: The Roles of Water in Earth’s Surface Processes

- The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns. (MS-ESS2-5)
- Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents. (MS-ESS2-6)

ESS2.D: Weather and Climate

- Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns. (MS-ESS2-6)
- Because these patterns are so complex, weather can only be predicted probabilistically. (MS-ESS2-5)
- The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents. (MS-ESS2-6)

ESS3.D: Global Climate Change

- Human activities, such as the release of greenhouse gases from burning fossil fuels, are major factors in the current rise in Earth’s mean surface temperature (global warming). Reducing the level of climate change and reducing human vulnerability to whatever climate changes do occur depend on the understanding of climate science, engineering capabilities, and other kinds of knowledge, such as understanding of human behavior and on applying that knowledge wisely in decisions and activities. (MS-ESS3-5)

Connections to other DCIs in this grade-band: MS.PS1.A (MS-ESS2-5); MS.PS2.A (MS-ESS2-5); MS.PS2.B (MS-ESS2-5); MS.PS3.A (MS-ESS2-5); MS.PS3.B (MS-ESS2-5); MS.PS4.B (MS-ESS2-6)

Articulation of DCIs across grade-bands: 3.PS2.A (MS-ESS2-6); 3.ESS2.D (MS-ESS2-5); 3.ESS2.B (MS-ESS2-5); 5.ESS2.A (MS-ESS2-5); 5.ESS2.B (MS-ESS2-5); HS.PS2.B (MS-ESS2-5); HS.PS3.B (MS-ESS2-5); HS.PS4.B (MS-ESS2-5); MS.HSS1.B (MS-ESS2-5); MS.HSS1.A (MS-ESS2-5); MS.HSS2.A (MS-ESS2-5); MS.HSS2.B (MS-ESS2-5); MS.HSS2.C (MS-ESS2-5); MS.HSS3.C (MS-ESS3-5); MS.HSS3.D (MS-ESS3-5)

Common Core State Standards Connections: will be available on or before April 26, 2013.

ELA/Literacy –

RST.6-8.1

- Cite specific textual evidence to support analysis of science and technical texts. (MS-ESS2-5), (MS-ESS3-5)

RST.6-8.9

- Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-ESS2-5)

WHST.6-8.8

- Gather relevant information from multiple print and digital sources; assess the credibility of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and providing basic bibliographic information for sources. (MS-ESS2-5)

SL.8.B

- Include multimedia components and visual displays in presentations to clarify claims and findings and emphasize salient points. (MS-ESS2-6)

Mathematics –

MP.2

- Reason abstractly and quantitatively. (MS-ESS2-5), (MS-ESS3-5)

6.NS.C.5

- Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-ESS2-5)

6.EE.B.6

- Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-ESS2-5)

7.EE.B.4

- Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-ESS3-5)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

April 2013
NGSS Release
58