MS.Structure and Properties of Matter

MS.Structure and Properties of Matter

Students who demonstrate understanding can:

- MS-PS1-1. Develop models to describe the atomic composition of simple molecules and extended structures. [Clarification Statement: Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include ammonia and methanol. Examples of extended structures could include sodium chloride or diamonds. Examples of molecular-level models could include drawings, 3D ball and stick structures or computer representations showing different molecules with different types of atoms.] [Assessment Boundary: Assessment does not include valence electrons and bonding energy, discussing the ionic nature of subunits of complex structures, or a complete depiction of all individual atoms in a complex molecule or extended
- MS-PS1-3. Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. [Clarification Statement: Emphasis is on natural resources that undergo a chemical process to form the synthetic material. Examples of new materials could include new medicine, foods, and alternative fuels.] [Assessment Boundary: Assessment is limited to qualitative information.]
- MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. [Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawings and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems.

 Develop a model to predict and/or describe phenomena. (MS-PS1-1),(MS-PS1-4)

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 6–8 builds on K–5 and progresses to evaluating the merit and validity of ideas and methods.

 Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence. (MS-PS1-3)

Connections to Nature of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

 Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-5)

Disciplinary Core Ideas

PS1.A: Structure and Properties of Matter

- Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms. (MS-PS1-1)
- Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS-PS1-3) (Note: This Disciplinary Core Idea is also addressed by MS-PS1-2.)
- Gases and liquids are made of molecules or inert atoms that are moving about relative to each other. (MS-PS1-4)
- In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. (MS-PS1-4)
- Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). (MS-PS1-1)
- The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter. (MS-PS1-4)

PS1.B: Chemical Reactions

 Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-3) (Note: This Disciplinary Core Idea is also addressed by MS-PS1-2 and MS-PS1-5.)

PS3.A: Definitions of Energy

- The term "heat" as used in everyday language refers both to thermal motion (the motion of atoms or molecules within a substance) and radiation (particularly infrared and light). In science, heat is used only for this second meaning; it refers to energy transferred when two objects or systems are at different temperatures. (secondary to MS-PS1-4)
- The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. (secondary to MS-PS1-4)

Crosscutting Concepts

Cause and Effect

 Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-PS1-4)

Scale, Proportion, and Quantity

 Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. (MS-PS1-1)

Structure and Function

 Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used. (MS-PS1-3)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

 Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems. (MS-PS1-3)

Influence of Science, Engineering and Technology on Society and the Natural World

 The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time. (MS-PSI-3)

Connections to other DCIs in this grade-band: MS.LS2.A (MS-PS1-3); MS.LS4.D (MS-PS1-3); MS.ESS2.C (MS-PS1-1),(MS-PS1-4); MS.ESS3.A (MS-PS1-3); MS.ESS3.C (MS-PS1-3)

Articulation across grade-bands: 5.PS1.A (MS-PS1-1); HS.PS1.A (MS-PS1-1),(MS-PS1-3),(MS-PS1-4); HS.PS1.B (MS-PS1-4); HS.PS3.A (MS-PS1-4); HS.LS2.A (MS-PS1-3);

HS.LS4.D (MS-PS1-3); HS.ESS1.A (MS-PS1-1); HS.ESS3.A (MS-PS1-3)

Common Core State Standards Connections: ELA/Literacy —

RST.6-8.1 RST.6-8.7

Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions (MS-PS1-3)

Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram,

model, graph, or table). (MS-PS1-1),(MS-PS1-4)

WHST.6-8.8

Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-PS1-3)

Mathematics -

MP.2 Reason abstractly and quantitatively. (MS-PS1-1)

MP.4 Model with mathematics. (MS-PS1-1)

6.RP.A.3 Use ratio and rate reasoning to solve real-world and mathematical problems. (MS-PS1-1)

6.NS.C.5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

April 2013 NGSS Release 38

MS.Structure and Properties of Matter

contexts, explaining the meaning of 0 in each situation. (MS-PS1-4)

Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. (MS-PS1-1) 8.EE.A.3

April 2013 NGSS Release 39