MS.Space Systems

MS.Space Systems

Students who demonstrate understanding can:

- Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, MS-ESS1-1. eclipses of the sun and moon, and seasons. [Clarification Statement; Examples of models can be physical, graphical, or conceptual,]
- MS-ESS1-2. Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. [Clarification Statement: Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as their school or state).] [Assessment Boundary: Assessment does not include Kepler's Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.]
- MS-ESS1-3. Analyze and interpret data to determine scale properties of objects in the solar system. [Clarification Statement: Emphasis is on the analysis of data from Earth-based instruments, space-based telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

Develop and use a model to describe phenomena. (MS-ESS1-1),(MS-ESS1-2)

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

Analyze and interpret data to determine similarities and differences in findings. (MS-ESS1-3)

Disciplinary Core Ideas

ESS1.A: The Universe and Its Stars

recalling facts about properties of the planets and other solar system bodies.]

- Patterns of the apparent motion of the sun, the moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1)
- Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in the universe. (MS-ESS1-2)

ESS1.B: Earth and the Solar System

- The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them. (MS-ESS1-2),(MS-ESS1-3)
- This model of the solar system can explain eclipses of the sun and the moon. Earth's spin axis is fixed in direction over the shortterm but tilted relative to its orbit around the sun. The seasons are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year. (MS-ESS1-
- The solar system appears to have formed from a disk of dust and gas, drawn together by gravity. (MS-ESS1-2)

Crosscutting Concepts

Patterns

Patterns can be used to identify cause and effect relationships. (MS-ESS1-1)

Scale, Proportion, and Quantity

Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. (MS-ESS1-

Systems and System Models

Models can be used to represent systems and their interactions. (MS-ESS1-2)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and **Technology**

Engineering advances have led to important discoveries in virtually every field of science and scientific discoveries have led to the development of entire industries and engineered systems. (MS-ESS1-3)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and **Consistency in Natural Systems**

Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-ESS1-1), (MS-ESS1-2) Connections to other DCIs in this grade-band: MS.PS2.A (MS-ESS1-1), (MS-ESS1-2); MS.PS2.B (MS-ESS1-1), (MS-ESS1-2); MS.ESS2.A (MS-ESS1-3)

Articulation of DCIs across grade-bands: 3.PS2.A (MS-ESS1-1),(MS-ESS1-2); 5.PS2.B (MS-ESS1-1),(MS-ESS1-2); 5.ESS1.A (MS-ESS1-2); 5.ESS1.B (MS-ESS1-1),(MS-ESS1-2),(5-ESS1-2); 5.ESS1.B (MS-ESS1-3),(MS-ESS1-3),(MS-ESS1-3),(MS-ESS1-3); 5.ESS1.B (MS-ESS1-3),(MS-E ESS1-3); HS.PS2.A (MS-ESS1-1),(MS-ESS1-2); HS.PS2.B (MS-ESS1-1),(MS-ESS1-2); HS.ESS1.A (MS-ESS1-2); HS.ESS1.B (MS-ESS1-2),(MS-ESS1-2); HS.ESS2.A (MS-ESS1-3); HS.ESS2.A (MS-ESS1-3); HS.ESS2.A (MS-ESS1-3); HS.ESS2.A (MS-ESS1-3); HS.ESS3.B (MS-ESS1-3); HS ESS1-3)

Common Core State Standards Connections:

ELA/Literacy -

RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts. (MS-ESS1-3)

RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram,

model, graph, or table). (MS-ESS1-3)

SL.8.5

Include multimedia components and visual displays in presentations to clarify claims and findings and emphasize salient points. (MS-ESS1-1), (MS-ESS1-2)

Mathematics -

Reason abstractly and quantitatively. (MS-ESS1-3) Model with mathematics. (MS-ESS1-1),(MS-ESS1-2) MP.2 MP.4

6.RP.A.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-ESS1-1),(MS-ESS1-2).(MS-ESS1-3) 7.RP.A.2

Recognize and represent proportional relationships between quantities. (MS-ESS1-1),(MS-ESS1-2).(MS-ESS1-3)

6.EE.B.6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an

unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-ESS1-2)

7.EE.B.4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-ESS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

April 2013 NGSS Release 55