MS.Natural Selection and Adaptations

Students who demonstrate understanding can:

MS-LS4-1. Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. [Clarification Statement: Emphasis is on finding patterns of changes in the level of complexity of anatomical structures in organisms and the chronological order of fossil appearance in the rock layers.] [Assessment Boundary: Assessment does not include the names of individual species or geological eras in the fossil record.]

MS-LS4-2. Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. [Clarification Statement: Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.]

MS-LS4-3. Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy. [Clarification Statement: Emphasis is on inferring general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.] [Assessment Boundary: Assessment of comparisons is limited to gross appearance of anatomical structures in embryological development.]

MS-LS4-4. Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment. [Clarification Statement: Emphasis is on using simple probability statements and proportional reasoning to construct explanations.

MS-LS4-6. Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time. [Clarification Statement: Emphasis is on using mathematical models, probability statements, and proportional reasoning to support explanations of trends in changes to populations over time.] [Assessment Boundary: Assessment does not include Hardy Weinberg calculations.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Analyzing and Interpreting Data
Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, displaying quantitative information and analyzing trends. (MS-LS4-1)

Using Mathematics and Computational Thinking
Mathematical and computational thinking in 6–8 builds on K–5 experiences and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments.

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments.

Disciplinary Core Ideas

LS4.A: Evidence of Common Ancestry and Diversity
- The collection of fossils and their placement in chronological order (e.g., through the location of the sedimentary layers in which they are found or through radioactive dating) is known as the fossil record. It documents the existence, diversity, extinction, and change of many life forms throughout the history of life on Earth. (MS-LS4-1)
- Anatomical similarities and differences between various organisms living today and between them and organisms in the fossil record, enable the reconstruction of evolutionary history and the inference of lines of evolutionary descent. (MS-LS4-2)
- Comparison of the embryological development of different species also reveals similarities that show relationships not evident in the fully-formed anatomy. (MS-LS4-3)

LS4.B: Natural Selection
- Natural selection leads to the predominance of certain traits in a population, and the suppression of others. (MS-LS4-4)

LS4.C: Adaptation
- Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribution of traits in a population changes. (MS-LS4-6)

Crosscutting Concepts

Patterns
- Patterns can be used to identify cause and effect relationships. (MS-LS4-2)
- Graphs, charts, and images can be used to identify patterns in data. (MS-LS4-1), (MS-LS4-3)

Cause and Effect
- Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability. (MS-LS4-4), (MS-LS4-6)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems
- Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS4-1), (MS-LS4-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

April 2013 NGSSE Release 53
MS. Natural Selection and Adaptations

WHST.6-8.2	Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS4-2), (MS-LS4-4)
WHST.6-8.9	Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS4-2), (MS-LS4-4)
SL.8.1	Engage effectively in a range of collaborative discussions (one-on-one, in groups, teacher-led) with diverse partners on grade 6 topics, texts, and issues, building on others’ ideas and expressing their own clearly. (MS-LS4-2), (MS-LS4-4)
SL.8.4	Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. (MS-LS4-2), (MS-LS4-4)
Mathematics – MP.4	Model with mathematics. (MS-LS4-6)
6.RP.A.1	Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-LS4-4), (MS-LS4-6)
7.RP.A.2	Recognize and represent proportional relationships between quantities. (MS-LS4-4), (MS-LS4-6)
6.SP.B.5	Summarize numerical data sets in relation to their context. (MS-LS4-4), (MS-LS4-6)
6.EE.B.6	Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-LS4-1), (MS-LS4-2)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

April 2013

NGSS Release