MS.Growth, Development, and Reproduction of Organisms

Students who demonstrate understanding can:

MS-LS1-4. Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. [Clarification Statement: Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds, and creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.]

MS-LS1-5. Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. [Clarification Statement: Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include large breed cattle and species of grass affecting growth of organisms. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, and fish growing larger in large ponds than they do in small ponds.] [Assessment Boundary: Assessment does not include genetic mechanisms, gene regulation, or biochemical processes.]

MS-LS3-1. Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. [Clarification Statement: Emphasis is on conceptual understanding that changes in genetic material may result in making different proteins.] [Assessment Boundary: Assessment does not include specific changes at the molecular level, mechanisms for protein synthesis, or specific types of mutations.]

MS-LS3-2. Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. [Clarification Statement: Emphasis is on using models such as Punnett squares, diagrams, and simulations to describe the cause and effect relationship of gene transmission from parent(s) to offspring and resulting genetic variation.]

MS-LS4-5. Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms. [Clarification Statement: Emphasis is on synthesizing information from reliable sources about the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, gene therapy); and, on the impacts these technologies have on society as well as the technologies leading to these scientific discoveries.]

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.</td>
<td>LS1.B: Growth and Development of Organisms Organisms reproduce, either sexually or asexually, and transfer their genetic information to their offspring. (Secondary to MS-LS2-2)</td>
<td>Cause and Effect Cause and effect relationships may be used to predict phenomena in natural systems. (MS-LS2-2)</td>
</tr>
<tr>
<td>• Develop and use a model to describe phenomena. (MS-LS3-1), (MS-LS3-2)</td>
<td>• Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction. (MS-LS1-4)</td>
<td>Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability. (MS-LS1-4), (MS-LS1-5), (MS-LS4-5)</td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories.</td>
<td>LS3.A: Inheritance of Traits Genes are located in the chromosomes of cells, with each chromosome pair containing two variants of each of many distinct genes. Each distinct gene is controlled by specific proteins. In the adult, these proteins determine the characteristics of the offspring. (MS-LS3-2)</td>
<td>Structure and Function Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the shapes, composition, and relationships among its parts, therefore complex natural and designed structures/systems can be analyzed to determine how they function. (MS-LS3-1)</td>
</tr>
<tr>
<td>• Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (MS-LS1-5)</td>
<td>LS3.B: Variation of Traits In sexually reproducing organisms, each parent contributes half of the genes acquired (at random) by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may differ from each other. (MS-LS3-2)</td>
<td>Connections to Engineering, Technology, and Applications of Science Interdependence of Science, Engineering, and Technology Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems. (MS-LS4-5)</td>
</tr>
<tr>
<td>Engaging in Argument from Evidence Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).</td>
<td>• In addition to variations that arise from sexual reproduction, genetic information can be altered because of mutations. Though rare, mutations may result in changes to the structure and function of proteins. Some changes are beneficial, others harmful, and some neutral to the organism. (MS-LS3-1)</td>
<td>Science Addresses Questions About the Natural and Material World Science knowledge can describe consequences of actions but does not make the decisions that society takes. (MS-LS4-5)</td>
</tr>
<tr>
<td>• Use an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-LS1-4)</td>
<td>LS4.B: Natural Selection In artificial selection, humans have the capacity to influence certain characteristics of organisms by selective breeding. One can choose desired parental traits determined by genes, which are then passed on to offspring. (MS-LS4-5)</td>
<td>Connections to Nature of Science</td>
</tr>
<tr>
<td>Obtaining, Evaluating, and Communicating Information Obtaining, evaluating, and communicating information in 6–8 builds on K–5 experiences and progresses to evaluating the merit and validity of ideas and methods.</td>
<td>• In artificial selection, humans have the capacity to influence certain characteristics of organisms by selective breeding. One can choose desired parental traits determined by genes, which are then passed on to offspring. (MS-LS4-5)</td>
<td></td>
</tr>
</tbody>
</table>
| • Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence. (MS-LS4-5) | **Connections to other DCIs in this grade-band: MS.LS1.A (MS-LS3-1); MS.LS1.B (MS-LS3-2); MS.LS2.A (MS-LS3-4), (MS-LS3-5) | *The performance expectations marked with an asterisk (•) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.*
MS.Growth, Development, and Reproduction of Organisms

Articulation to DCIs across grade-bands: 3.LS1.B (MS-LS1-4), (MS-LS1-5); 3.LS3.A (MS-LS1-5), (MS-LS3-1), (MS-LS3-2); 3.LS3.B (MS-LS3-1), (MS-LS3-2); HS.LS1.A (MS-LS3-1); HS.LS1.B (MS-LS3-1), (MS-LS3-2); HS.LS2.A (MS-LS1-4), (MS-LS1-5); HS.LS2.D (MS-LS1-4); HS.LS3.A (MS-LS3-1), (MS-LS3-2); HS.LS3.B (MS-LS3-1), (MS-LS3-2), (MS-LS4-5); HS.LS4.C (MS-LS4-5)

Common Core State Standards Connections:

ELA/Literacy –

RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts. (MS-LS1-4), (MS-LS1-5), (MS-LS3-1), (MS-LS3-2), (MS-LS4-5)

RST.6-8.2 Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. (MS-LS1-5)

RST.6-8.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics. (MS-LS1-1), (MS-LS3-2)

RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-LS3-1), (MS-LS3-2)

RI.6.8 Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. (MS-LS1-4)

WHST.6-8.1 Write arguments focused on discipline content. (MS-LS1-4)

WHST.6-8.2 Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS1-5)

WHST.6-8.8 Gather relevant information from multiple print and digital sources; assess the credibility of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and providing basic bibliographic information for sources. (MS-LS4-5)

WHST.6-8.9 Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS1-5)

SL.8.5 Include multimedia components and visual displays in presentations to clarify claims and findings and emphasize salient points. (MS-LS3-1), (MS-LS3-2)

Mathematics –

MP.4 Model with mathematics. (MS-LS3-2)

6.SP.A.2 Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape. (MS-LS1-4), (MS-LS1-5)

6.SP.B.4 Summarize numerical data sets in relation to their context. (MS-LS1-4), (MS-LS1-5)

6.SP.B.5 Summarize numerical data sets in relation to their context. (MS-LS3-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

April 2013 NGSS Release 52