HS.Inheritance and Variation of Traits

Students who demonstrate understanding can:

HS-LS1-4. Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms. [Assessment Boundary: Does not include specific gene control mechanisms or rote memorization of the steps of mitosis.]

HS-LS3-1. Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring. [Assessment Boundary: Does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]

HS-LS3-2. Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors. [Clarification Statement: Emphasis is on using data to support arguments for the way variation occurs.] [Assessment Boundary: Does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]

HS-LS3-3. Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population. [Clarification Statement: Emphasis is on the use of mathematics to describe the probability of traits as it relates to genetic and environmental factors in the expression of traits.] [Assessment Boundary: Does not include Hardy-Weinberg calculations.]

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in 9-12 builds on K-8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design questions using models and simulations.

- Ask questions that arise from examining models or a theory to clarify relationships. (HS-LS3-1)

Developing and Using Models

Modeling in 9-12 builds on K-8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds.

- Use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-LS1-4)

Analyzing and Interpreting Data

Analyzing data in 9-12 builds on K-8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

- Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. (HS-LS3-3)

Engaging in Argument from Evidence

Engaging in argument from evidence in argument from evidence in 9-12 builds on K-8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

- Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. (HS-LS3-2)

Disciplinary Core Ideas

LS1.A: Structure and Function

- All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins. (secondary to HS-LS2-1) (Note: This Disciplinary Core Idea is also addressed by HS-LS1-1)

LS1.B: Growth and Development of Organisms

- In multicellular organisms individual cells grow and then divide via a process called mitosis, thereby allowing the organism to grow. The organism begins as a single cell (fertilized egg) that divides successively to produce many cells, with each parent cell passing identical genetic material (two variants of each chromosome pair) to both daughter cells. Cellular division and differentiation produce and maintain a complex organism, composed of systems of tissues and organs that work together to meet the needs of the whole organism. (HS-LS1-4)

LS3.A: Inheritance of Traits

- Each chromosome consists of a single very long DNA molecule, and each gene on the chromosome is a particular segment of that DNA. The instructions for forming species’ characteristics are carried in DNA. All cells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes for a protein; some segments of DNA are involved in regulatory or structural functions, and some have no as-yet known function. (HS-LS3-4)

LS3.B: Variation of Traits

- In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation. Although DNA replication is tightly regulated and remarkably accurate, errors do occur and result in mutations, which are also a source of genetic variation. Environmental factors can also cause mutations in genes, and viable mutations are inherited. (HS-LS3-2)

- Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors. (HS-LS3-2)

Crosscutting Concepts

Cause and Effect

- Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-LS3-1),(HS-LS3-2)

Scale, Proportion, and Quantity

- Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). (HS-LS3-3)

Systems and System Models

- Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions— including energy, matter, and information flows— within and between systems at different scales. (HS-LS1-4)

Connections to Nature of Science

Science is a Human Endeavor

- Technological advances have influenced the progress of science and science has influenced advances in technology. (HS-LS3-3)

- Science and engineering are influenced by society and society is influenced by science and engineering. (HS-LS3-3)

Connections to other DCIs in this grade-band: HS.LS2.A (HS-LS3-3); HS.LS2.C (HS-LS3-3); HS.LS4.B (HS-LS3-3); HS.LS4.C (HS-LS3-3)

Articulation across grade-bands: MS.LS1.A (1-LS1-4); MS.LS1.B (1-LS1-4); MS.LS2.A (HS-LS3-3); MS.LS3.A (1-LS1-4),(HS-LS3-1),(HS-LS3-2); MS.LS3.B (HS-LS3-1),(HS-LS3-2),(HS-LS3-3); MS.LS4.C (HS-LS3-3)

Common Core State Standards Connections:

ELA/Literacy –

RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-LS3-1),(HS-LS3-2)

RST.11-12.9 Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible. (HS-LS3-1)

WHST.9-12.1 Write arguments focused on discipline-specific content. (HS-LS3-2)

SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-LS3-1)

Mathematics –

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

HS.Inheritance and Variation of Traits

<table>
<thead>
<tr>
<th>MP.2</th>
<th>Reason abstractly and quantitatively. (HS-LS3-2),(HS-LS3-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP.4</td>
<td>Model with mathematics. (HS-LSI-4)</td>
</tr>
<tr>
<td>HSF-IF.C.7</td>
<td>Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (LSI-4)</td>
</tr>
<tr>
<td>HSF-BF.A.1</td>
<td>Write a function that describes a relationship between two quantities. (LSI-4)</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.