HS.Earth's Systems

Students who demonstrate understanding can:

HS-ESS2-2. Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems. [Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth's surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.]

HS-ESS2-3. Develop a model based on evidence of Earth’s interior to describe the cycling of matter by thermal convection. [Clarification Statement: Emphasis is on both a one-dimensional model of Earth, with radial layers determined by density, and a three-dimensional model, which is controlled by mantle convection and the resulting plate tectonics. Examples of evidence include maps of Earth's three-dimensional structure obtained from seismic waves, records of the rate of change of Earth's magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth's layers from high-pressure laboratory experiments.]

HS-ESS2-5. Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).]

HS-ESS2-6. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. [Clarification Statement: Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.]

HS-ESS2-7. Construct an argument based on evidence about the simultaneous coevolution of Earth systems and life on Earth. [Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth's other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth's surface. Examples of include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms. [Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth's other systems.]

Science and Engineering Practices

Developing and Using Models
- Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).
- Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-ESS2-3), (HS-ESS2-6)

Planning and Carrying Out Investigations
- Planning and carrying out investigations in 9–12 builds on K–8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.
- Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-ESS2-5)

Analyzing and Interpreting Data
- Analyzing data in 9–12 builds on K–8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.
- Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-ESS2-5)

Engaging in Argument from Evidence
- Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.
- Construct an oral and written argument or counter-arguments based on data and evidence. (HS-ESS2-7)

Disciplinary Core Ideas

ESS2.A: Earth Materials and Systems
- Earth's systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes (HS-ESS2-2).
- Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth's surface and its magnetic field, and an understanding of physical and chemical processes lead to a model of Earth with a hot but solid inner core, a liquid outer core, a solid mantle and crust. Motions of the mantle and its plates occur primarily through thermal convection, which involves the cycling of matter due to the outward flow of energy from Earth's interior and gravitational movement of denser materials toward the interior. (HS-ESS2-3)

ESS2.B: Plate Tectonics and Large-Scale System Interactions
- The radioactive decay of unstable isotopes continually generates new energy within Earth's crust and mantle, providing the primary source of the heat that drives mantle convection. Plate tectonics can be viewed as the surface expression of mantle convection. (HS-ESS2-4)

ESS2.C: The Roles of Water in Earth's Surface Processes
- The abundance of liquid water on Earth's surface and its unique combination of physical and chemical properties are central to the planet's dynamics. These properties include water's exceptional capacity to absorb, store, and release large amounts of energy, transmit sunlight, expand upon freezing, dissolve and transport materials, and lower the viscosities and melting points of rocks. (HS-ESS2-5)

ESS2.D: Weather and Climate
- The foundation for Earth's global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy's re-radiation into space. (HS-ESS2-6)
- Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen. (HS-ESS2-6), (HS-ESS2-7)
- Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate. (HS-ESS2-6)

ESS2.E: Biogeology
- The many dynamic and delicate feedbacks between the biosphere and other Earth systems cause a continual...**Crosscutting Concepts**

Energy and Matter
- The total amount of energy and matter in closed systems is conserved. (HS-ESS2-6)
- Energy drives the cycling of matter within and between systems. (HS-ESS2-3)

Structure and Function
- The functions and properties of natural and designed objects and systems can be inferred from their overall structure, the way their components are shaped and used, and the molecular substructures of its various materials. (HS-ESS2-5)

Stability and Change
- Much of science deals with constructing explanations of how things change and how they remain stable. (HS-ESS2-7)
- Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible. (HS-ESS2-7)
- Feedback (negative or positive) can stabilize or destabilize a system. (HS-ESS2-2)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology
- Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. (HS-ESS2-3)
- Influence of Engineering, Technology, and Science on Society and the Natural World

The performance expectations above were developed using the following elements from the NRC document: A Framework for K–12 Science Education.

April 2013 NGSS Release 93
HS.Earth’s Systems

- Science knowledge is based on empirical evidence. (HS-ESS2-3)
- Science disciplines share common rules of evidence used to evaluate explanations about natural systems. (HS-ESS2-3)
- Science includes the process of coordinating patterns of evidence with current theory. (HS-ESS2-3)

Connections to other DCIs in this grade-band:
- **HS.PS1.A** (HS-ESS2-5),(HS-ESS2-6);
- **HS.PS1.B** (HS-ESS2-5),(HS-ESS2-6);
- **HS.PS2.B** (HS-ESS2-3);
- **HS.PS3.B** (HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-5);
- **HS.PS4.B** (HS-ESS2-2),(HS-ESS2-6);
- **HS.LS1.C** (HS-ESS2-6);
- **HS.LS2.A** (HS-ESS2-7);
- **HS.LS2.B** (HS-ESS2-2),(HS-ESS2-6);
- **HS.LS2.C** (HS-ESS2-2),(HS-ESS2-7);
- **HS.LS4.A** (HS-ESS2-7);
- **HS.LS4.B** (HS-ESS2-7);
- **HS.LS4.C** (HS-ESS2-7);
- **HS.LS4.D** (HS-ESS2-2),(HS-ESS2-7);
- **HS.LS5.C** (HS-ESS2-2),(HS-ESS2-5),(HS-ESS2-6);
- **HS.ESS3.D** (HS-ESS2-2),(HS-ESS2-6)

Articulation of DCIs across grade-bands:
- **MS.PS1.A** (HS-ESS2-3),(HS-ESS2-5),(HS-ESS2-6);
- **MS.PS1.B** (HS-ESS2-3);
- **MS.PS2.B** (HS-ESS2-3);
- **MS.PS3.A** (HS-ESS2-3);
- **MS.PS3.B** (HS-ESS2-3);
- **MS.PS3.D** (HS-ESS2-2),(HS-ESS2-6);
- **MS.PS4.B** (HS-ESS2-2),(HS-ESS2-5),(HS-ESS2-6);
- **LS.LS1.A** (HS-ESS2-7);
- **LS.LS1.B** (HS-ESS2-7);
- **LS.LS2.A** (HS-ESS2-7);
- **LS.LS2.B** (HS-ESS2-2),(HS-ESS2-6);
- **LS.LS2.C** (HS-ESS2-2),(HS-ESS2-6);
- **MS.ESS2.B** (HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-6);
- **MS.ESS2.C** (HS-ESS2-2),(HS-ESS2-5),(HS-ESS2-6);
- **MS.ESS2.D** (HS-ESS2-2),(HS-ESS2-5);
- **MS.ESS2.E** (HS-ESS2-2),(HS-ESS2-5),(HS-ESS2-6);
- **MS.ESS3.C** (HS-ESS2-2),(HS-ESS2-6);
- **MS.ESS3.D** (HS-ESS2-2),(HS-ESS2-6)

Common Core State Standards Connections:

- **ELA/Literacy –**
 - **RST.11-12.1** Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS2-2),(HS-ESS2-3)
 - **RST.11-12.2** Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. (HS-ESS2-2)
 - **WHST.9-12.1** Write arguments focused on discipline-specific content. (HS-ESS2-7)
 - **WHST.9-12.7** Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-ESS2-5)
 - **SL.11-12.5** Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-ESS2-3)

- **Mathematics –**
 - **MP.2** Reason abstractly and quantitatively. (HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-6)
 - **MP.4** Model with mathematics. (HS-ESS2-3),(HS-ESS2-6)
 - **HSN-Q.A.1** Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-6)
 - **HSN-Q.A.2** Define appropriate quantities for the purpose of descriptive modeling. (HS-ESS2-3),(HS-ESS2-6)
 - **HSN-Q.A.3** Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-5),(HS-ESS2-6)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

April 2013 NGSS Release 94