Argument-Driven Inquiry in Life Science

Lab Investigations for Grades 6–8

Patrick J. Enderle, Ruth Bickel, Leeanne Gleim, Ellen Granger, Jonathon Grooms, Melanie Hester, Ashley Murphy, Victor Sampson, and Sherry A. Southerland
Argument-Driven Inquiry in Life Science

Lab Investigations for Grades 6–8
Argument-Driven Inquiry in Life Science

Lab Investigations for Grades 6–8

Patrick J. Enderle, Ruth Bickel, Leeanne Gleim, Ellen Granger, Jonathon Grooms, Melanie Hester, Ashley Murphy, Victor Sampson, and Sherry A. Southerland

NSTA Press
National Science Teachers Association
Arlington, Virginia

Copyright © 2015 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions. TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781938946240
NSTA is committed to publishing material that promotes the best in inquiry-based science education. However, conditions of actual use may vary, and the safety procedures and practices described in this book are intended to serve only as a guide. Additional precautionary measures may be required. NSTA and the authors do not warrant or represent that the procedures and practices in this book meet any safety code or standard of federal, state, or local regulations. NSTA and the authors disclaim any liability for personal injury or damage to property arising out of or relating to the use of this book, including any of the recommendations, instructions, or materials contained therein.

Permissions
Book purchasers may photocopy, print, or e-mail up to five copies of an NSTA book chapter for personal use only; this does not include display or promotional use. Elementary, middle, and high school teachers may reproduce forms, sample documents, and single NSTA book chapters needed for classroom or noncommercial, professional-development use only. E-book buyers may download files to multiple personal devices but are prohibited from posting the files to third-party servers or websites, or from passing files to non-buyers. For additional permission to photocopy or use material electronically from this NSTA Press book, please contact the Copyright Clearance Center (CCC) (www.copyright.com; 978-750-8400). Please access www.nsta.org/permissions for further information about NSTA's rights and permissions policies.

Library of Congress Cataloging-in-Publication Data
Enderle, Patrick.
Argument-driven inquiry in life science : lab investigations for grades 6–8 / Patrick J. Enderle [and 8 others].
 pages cm
Includes bibliographical references and index.
QH324.E483 2015
570.78--dc23
2015013671

Cataloging-in-Publication Data for the e-book are also available from the Library of Congress.
e-LCCN: 2015021523
CONTENTS

Preface ... xi
Acknowledgments .. xiii
About the Authors ... xv
Introduction .. xvii

SECTION 1
Using Argument-Driven Inquiry

<table>
<thead>
<tr>
<th>Chapter 1. Argument-Driven Inquiry</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2. Lab Investigations</td>
<td>19</td>
</tr>
</tbody>
</table>

SECTION 2—Life Sciences Core Idea 1
From Molecules to Organisms: Structures and Processes

INTRODUCTION LABS

Lab 1. Cellular Respiration: Do Plants Use Cellular Respiration to Produce Energy?
- Teacher Notes ... 28
- Lab Handout .. 35
- Checkout Questions .. 40

Lab 2. Photosynthesis: Where Does Photosynthesis Take Place in Plants?
- Teacher Notes ... 42
- Lab Handout .. 49
- Checkout Questions .. 54

APPLICATION LABS

Lab 3. Osmosis: How Does the Concentration of Salt in Water Affect the Rate of Osmosis?
- Teacher Notes ... 58
- Lab Handout .. 65
- Checkout Questions .. 70

Lab 4. Cell Structure: What Type of Cell Is on the Unknown Slides?
- Teacher Notes ... 72
- Lab Handout .. 79
- Checkout Questions .. 84
Lab 5. Temperature and Photosynthesis: How Does Temperature Affect the Rate of Photosynthesis in Plants?
Teacher Notes.. 86
Lab Handout.. 93
Checkout Questions... 98

Lab 6. Energy in Food: Which Type of Nut Is Best for a New Energy Bar?
Teacher Notes.. 100
Lab Handout.. 108
Lab 6 Reference Sheet: Costs and Exercise Calories ... 113
Checkout Questions... 114

Lab 7. Respiratory and Cardiovascular Systems: How Do Activity and Physical Factors Relate to Respiratory and Cardiovascular Fitness?
Teacher Notes.. 116
Lab Handout.. 123
Lab 7 Reference Sheet: Cardiovascular Fitness Test Protocol and Tables......................... 128
Checkout Questions... 132

Lab 8. Memory and Stimuli: How Does the Way Information Is Presented Affect Working Memory?
Teacher Notes.. 134
Lab Handout.. 140
Checkout Questions... 145

SECTION 3—Life Sciences Core Idea 2
Ecosystems: Interactions, Energy, and Dynamics

INTRODUCTION LABS

Teacher Notes.. 150
Lab Handout.. 158
Checkout Questions... 164

Teacher Notes.. 166
Lab Handout.. 173
Checkout Questions... 178
APPLICATION LABS

Lab 11. Food Webs and Ecosystems: Which Member of an Ecosystem Would Affect the Food Web the Most If Removed?

- Teacher Notes... 182
- Lab Handout.. 188
- Checkout Questions... 192

Lab 12. Matter in Ecosystems: How Healthy Are Your Local Ecosystems?

- Teacher Notes... 194
- Lab Handout.. 202
- Lab 12 Reference Sheet: The Nitrogen Cycle and the Phosphorus Cycle.................... 207
- Checkout Questions... 210

Lab 13. Carbon Cycling: Which Carbon Cycle Process Affects Atmospheric Carbon the Most?

- Teacher Notes... 212
- Lab Handout.. 219
- Checkout Questions... 224

SECTION 4—Life Sciences Core Idea 3

Heredity: Inheritance and Variation in Traits

INTRODUCTION LABS

Lab 14. Variation in Traits: How Do Beetle Traits Vary Within and Across Species?

- Teacher Notes... 230
- Lab Handout.. 238
- Lab 14 Reference Sheet: Three Types of Beetles... 243
- Checkout Questions... 246

Lab 15. Mutations in Genes: How Do Different Types of Mutations in Genes Affect the Function of an Organism?

- Teacher Notes... 248
- Lab Handout.. 256
- Checkout Questions... 261
APPLICATION LAB

Lab 16. Mechanisms of Inheritance: How Do Fruit Flies Inherit the Sepia Eye Color Trait?

Teacher Notes ... 264
Lab Handout ... 270
Checkout Questions .. 275

SECTION 5—Life Sciences Core Idea 4

Biological Evolution: Unity and Diversity

INTRODUCTION LAB

Teacher Notes ... 280
Lab Handout ... 286
Checkout Questions .. 292

APPLICATION LABS

Lab 18. Environmental Change and Evolution: Which Mechanism of Microevolution Caused the Beak of the Medium Ground Finch Population on Daphne Major to Increase in Size From 1976 to 1978?

Teacher Notes ... 296
Lab Handout ... 305
Checkout Questions .. 311

Lab 19. Phylogenetic Trees and the Classification of Fossils: How Should Biologists Classify the Seymouria?

Teacher Notes ... 314
Lab Handout ... 323
Checkout Questions .. 330

Lab 20. Descent With Modification and Embryonic Development: Does Animal Embryonic Development Support or Refute the Theory of Descent With Modification?

Teacher Notes ... 332
Lab Handout ... 338
Checkout Questions .. 344
SECTION 6—Appendixes

Appendix 1. Standards Alignment Matrixes ... 349
Appendix 2. Options for Implementing ADI Lab Investigations 355
Appendix 3. Investigation Proposal Options .. 361

Image Credits .. 369
Index .. 373
There is a push to change the way science is taught in the United States, called for by a different idea of what it means to know, understand, and be able to do in science. As described in *A Framework for K–12 Science Education* (National Research Council [NRC] 2012) and the *Next Generation Science Standards* (NGSS Lead States 2013), science education should be structured to emphasize ideas and practices to ensure that by the end of 12th grade, all students have some appreciation of the beauty and wonder of science; possess sufficient knowledge of science and engineering to engage in public discussions on related issues; are careful consumers of scientific and technological information related to their everyday lives; are able to continue to learn about science outside school; and have the skills to enter careers of their choice, including (but not limited to) careers in science, engineering, and technology. (p. 1)

Instead of teaching with the goal of helping students learn facts and concepts, science teachers are now charged with helping their students become proficient in science by the time they graduate from high school. To allow for this proficiency, the NRC (2012) suggests that students need to understand four core ideas in the life sciences,1 be aware of seven crosscutting concepts that span across the various disciplines of science, and learn how to participate in eight fundamental scientific practices in order to be considered proficient in science. These important practices, crosscutting concepts, and core ideas are summarized in Figure 1 (p. xii).

As described by the NRC (2012), new instructional approaches are needed to assist students in developing these proficiencies. This book provides 20 lab activities designed using an innovative approach to lab instruction called argument-driven inquiry (ADI). This approach and the labs based on it are aligned with the content, crosscutting concepts, and scientific practices outlined in Figure 1. Because the ADI model calls for students to give presentations to their peers, respond to questions, and then write, evaluate, and revise reports as part of each lab, the lab activities described in this book will also enable students to develop the disciplinary-based literacy skills outlined in the *Common Core State Standards* for English language arts (NGAC and CCSSO 2010). Use of these labs, as a result, can help teachers align their instruction with current recommendations for making life science more meaningful for students and more effective for teachers.

1 Throughout this book, we use the term *life sciences* when referring to the core ideas of the Framework (in this context the term refers to a broad collection of scientific fields), but we use the term *life science* when referring to courses at the middle school level (as in the title of the book).
FIGURE 1
The three dimensions of the framework for the NGSS

<table>
<thead>
<tr>
<th>Scientific Practices</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Asking questions and defining problems</td>
<td>1. Patterns</td>
</tr>
<tr>
<td>2. Developing and using models</td>
<td>2. Cause and effect: Mechanism and explanation</td>
</tr>
<tr>
<td>3. Planning and carrying out investigations</td>
<td>3. Scale, proportion, and quantity</td>
</tr>
<tr>
<td>4. Analyzing and interpreting data</td>
<td>4. Systems and system models</td>
</tr>
<tr>
<td>7. Engaging in argument from evidence</td>
<td>7. Stability and change</td>
</tr>
<tr>
<td>8. Obtaining, evaluating, and communicating information</td>
<td></td>
</tr>
</tbody>
</table>

Life Sciences Core Ideas

- LS1: From molecules to organisms: Structures and processes
- LS2: Ecosystems: Interactions, energy, and dynamics
- LS3: Heredity: Inheritance and variation of traits
- LS4: Biological evolution: Unity and diversity

Source: Adapted from NRC 2012, p. 3.

References

ACKNOWLEDGMENTS

The development of this book was supported by the Institute of Education Sciences, U.S. Department of Education, through grant R305A100909 to Florida State University. The opinions expressed are those of the authors and do not represent the views of the institute or the U.S. Department of Education.
ABOUT THE AUTHORS

Patrick J. Enderle is a research faculty member in the Center for Education Research in Mathematics, Engineering, and Science (CERMES) at The University of Texas at Austin (UT-Austin). He received his BS and MS in molecular biology from East Carolina University. Patrick then spent some time as a high school biology teacher and several years as a visiting professor in the Department of Biology at East Carolina University. He then attended Florida State University (FSU), where he graduated with a PhD in science education. His research interests include argumentation in the science classroom, science teacher professional development, and enhancing undergraduate science education. To learn more about his work in science education, go to http://patrickenderle.weebly.com.

Ruth Bickel has been a teacher at FSU Schools for several years, supporting student learning in a variety of disciplines. She was originally a social studies teacher before taking an interest in teaching science. She has taught middle school Earth and space science and life science for several years. She has also taught a high school-level forensics course over the past few years. Ruth was responsible for writing and piloting many of the lab investigations included in this book.

Leeanne Gleim received a BA in elementary education from the University of Southern Indiana and an MS in science education from FSU. While at FSU, she worked as a research assistant for Victor Sampson (see his biography later in this section). After graduating, she taught biology and honors biology at FSU Schools, where she participated in the development of the argument-driven inquiry model. Leeanne was also responsible for writing and piloting many of the lab investigations included in this book.

Ellen Granger is the director of the Office of Science Teaching Activities and co-director of FSU-Teach, a collaborative math and science teacher preparation program between the College of Arts and Sciences and the College of Education at FSU. She earned her doctorate in neuroscience from FSU. She is a practicing scientist and science educator and has worked in teacher professional development for almost 20 years. In November 2013, she was named a Fellow of the American Association for the Advancement of Science for “distinguished contribution, service and leadership in advancing knowledge and classroom practices in science education.”

Jonathon Grooms received a BS in secondary science and mathematics teaching with a focus in chemistry and physics from FSU. Upon graduation, Jonathon joined FSU’s Office of Science Teaching Activities, where he directed the physical science outreach program Science on the Move. He entered graduate school at FSU and earned a PhD in science education. He now serves as a research scientist in CERMES (Center for Education Research in Mathematics, Engineering, and Science) at FSU. To learn more about his work in science education, go to www.jgrooms.com.
Melanie Hester has a BS in biological sciences with minors in chemistry and classical civilizations from FSU and an MS in secondary science education from FSU. She has been teaching for more than 20 years, with the last 13 at the FSU School in Tallahassee. Melanie was a Lockheed Martin fellow and a Woodrow Wilson fellow and received a Teacher of the Year award in 2007. She frequently gives presentations about innovative approaches to teaching at conferences and works with preservice teachers. Melanie was responsible for writing and piloting many of the lab investigations included in this book.

Ashley Murphy attended FSU and earned a BS with dual majors in biology and secondary science education. Ashley spent some time as a middle school biology and science teacher before entering graduate school at UT-Austin, where she is currently working toward a PhD in STEM (science, technology, engineering, and mathematics) education. Her research interests include argumentation in elementary and middle school classrooms. As an educator, she frequently employed argumentation as a means to enhance student understanding of concepts and science literacy.

Victor Sampson is an associate professor of science education and the director of CERMES at UT-Austin. He received a BA in zoology from the University of Washington, an MIT from Seattle University, and a PhD in curriculum and instruction with a specialization in science education from Arizona State University. Victor taught high school biology and chemistry for nine years before taking a position at FSU and then moving to UT-Austin. He specializes in argumentation in science education, teacher learning, and assessment. To learn more about his work in science education, go to www.vicsampson.com.

Sherry A. Southerland is a professor at FSU and the co-director of FSU-Teach. She received a BS and an MS in biology from Auburn University and a PhD in curriculum and instruction from Louisiana State University, with a specialization in science education and evolutionary biology. Sherry has worked as a teacher educator, biology instructor, high school science teacher, field biologist, and forensic chemist. Her research interests include understanding the influence of culture and emotions on learning—specifically evolution education and teacher education—and understanding how to better support teachers in shaping the way they approach science teaching and learning.
INTRODUCTION

The Importance of Helping Students Become Proficient in Science

The new aim of science education in the United States is for all students to become proficient in science by the time they finish high school. It is essential to recognize that science proficiency involves more than an understanding of important concepts, it also involves being able to do science. Science proficiency, as defined by Duschl, Schweingruber, and Shouse (2007), consists of four interrelated aspects. First, it requires an individual to know important scientific explanations about the natural world, to be able to use these explanations to solve problems, and to be able to understand new explanations when they are introduced to the individual. Second, it requires an individual to be able to generate and evaluate scientific explanations and scientific arguments. Third, it requires an individual to understand the nature of scientific knowledge and how scientific knowledge develops over time. Finally, and perhaps most important, an individual who is proficient in science should be able to participate in scientific practices (such as designing and carrying out investigations and arguing from evidence) and communicate in a manner that is consistent with the norms of the scientific community.

In the past decade, however, the importance of learning how to participate in scientific practices has not been acknowledged in the standards of many states. Many states have also attempted to make their science standards “more rigorous” by adding more content to them or lowering the grade level at which content is introduced rather than by emphasizing depth of understanding of core ideas and crosscutting concepts, as described by the National Research Council (NRC) in A Framework for K–12 Science Education (NRC 2012). The result of the increased number of science standards and the pressure to “cover” them to prepare students for high-stakes tests that target facts and definitions is that teachers have “alter[ed] their methods of instruction to conform to the assessment” (Owens 2009, p. 50). The unintended consequences of this change has been a focus on content (learning “facts”) rather than on developing scientific habits of mind or participating in the practices of science. Teachers must move through the curriculum quickly before the administration of the tests, forcing them to cover many topics in a shallow fashion rather than to delve into them deeply to foster understanding.

Despite this high-stakes accountability for science learning, students do not seem to be gaining proficiency in science. According to The Nation’s Report Card: Science 2009 (National Center for Education Statistics 2011), only 21% of all 12th-grade students who took the National Assessment of Educational Progress in science scored at the proficient level. The performance of U.S. students on international assessments is even bleaker, as indicated by their scores on the science portion of the Programme for International Student Assessment (PISA). PISA is an international study that was launched by the Organisation for Economic Co-operation and Development (OECD)
in 1997, with the goal of assessing education systems worldwide; more than 70 countries have participated in the study. The test is designed to assess reading, math, and science achievement and is given every three years. The mean score for students in the United States on the science portion of the PISA in 2012 is below the international mean (500), and there has been no significant change in the U.S. mean score since 2000; in fact, the U.S. mean score in 2012 is slightly less than it was in 2000 (OECD 2012; see Table 1). Students in countries such China, Korea, Japan, and Finland score significantly higher than students in the United States. These results suggest that U.S. students are not becoming proficient in science, even though teachers are covering a great deal of material and being held accountable for it.

<table>
<thead>
<tr>
<th>Year</th>
<th>U.S. mean score*</th>
<th>U.S. rank/Number of countries assessed</th>
<th>Top three performers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>499</td>
<td>14/27</td>
<td>Korea (552)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Japan (550)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Finland (538)</td>
</tr>
<tr>
<td>2003</td>
<td>491</td>
<td>22/41</td>
<td>Finland (548)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Japan (548)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hong Kong–China (539)</td>
</tr>
<tr>
<td>2006</td>
<td>489</td>
<td>29/57</td>
<td>Finland (563)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hong Kong–China (542)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Canada (534)</td>
</tr>
<tr>
<td>2009</td>
<td>499</td>
<td>15/43</td>
<td>Japan (552)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Korea (550)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hong Kong–China (541)</td>
</tr>
<tr>
<td>2012</td>
<td>497</td>
<td>36/65</td>
<td>Shanghai–China (580)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hong Kong–China (555)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Singapore (551)</td>
</tr>
</tbody>
</table>

*The mean score of the PISA is 500 across all years.

Source: OECD 2012.
Additional evidence of the consequences of emphasizing breadth over depth comes from empirical research in science education supporting the notion that broad, shallow coverage neglects the practices of science and hinders the development of science proficiency (Duschl, Schweingruber, and Shouse 2007; NRC 2005, 2008). As noted in the Framework (NRC 2012),

K–12 science education in the United States fails to [promote the development of science proficiency], in part because it is not organized systematically across multiple years of school, emphasizes discrete facts with a focus on breadth over depth, and does not provide students with engaging opportunities to experience how science is actually done. (p. 1)

Based on their review of the available literature, the NRC recommends that science teachers delve more deeply into core ideas to help their students develop improved understanding and retention of science content. The NRC also calls for students to be given more experience participating in the practices of science, with the goal of enabling students to better engage in public discussions about scientific issues related to their everyday lives, to be consumers of scientific information, and to have the skills and abilities needed to enter science or science-related careers. We think the school science laboratory is the perfect place to focus on core ideas and engage students in the practices of science and, as a result, help them develop the knowledge and abilities needed to be proficient in science.

How School Science Laboratories Can Help Foster the Development of Science Proficiency

Investigators have shown that lab activities have a standard format in U.S. secondary-school classrooms (Hofstein and Lunetta 2004; NRC 2005). (We use the NRC’s definition of a school science lab activity, which is “an opportunity for students to interact directly with the material world using the tools, data collection techniques, models, and theories of science” [NRC 2005, p. 3].) This format begins with the teacher introducing students to a concept through direct instruction, usually a lecture and/or reading. Next, students complete a confirmatory laboratory activity, usually following a “cookbook recipe” in which the teacher provides a step-by-step procedure to follow and a data table to fill out. Finally, students are asked to answer a set of focused analysis questions to ensure that the lab has illustrated, confirmed, or otherwise verified the targeted concept(s). This type of approach does little to promote science proficiency because it often fails to help students think critically about the concepts, engage in important scientific practices (such as designing an investigation, constructing explanations, or arguing from evidence), or develop scientific
habits of mind (Duschl, Schweingruber, and Shouse 2007; NRC 2005). Further, this approach does not perceptibly improve communication skills.

Changing the focus of lab instruction can help address these challenges. To implement such a change, teachers will have to emphasize “how we know” in the life sciences (i.e., how new knowledge is generated and validated) equally with “what we know” about life on Earth (i.e., the theories, laws, and unifying concepts). Because it is an essential practice of science, the NRC calls for argumentation (defined as proposing, supporting, and evaluating claims on the basis of reason) to play a more central role in the teaching and learning of science. The NRC (2012) provides a good description of the role argumentation plays in science:

Scientists and engineers use evidence-based argumentation to make the case for their ideas, whether involving new theories or designs, novel ways of collecting data, or interpretations of evidence. They and their peers then attempt to identify weaknesses and limitations in the argument, with the ultimate goal of refining and improving the explanation or design. (p. 46)

This means that the focus of teaching will have to shift more to scientific abilities and habits of mind so that students can learn to construct and support scientific knowledge claims through argument (NRC 2012). Students will also have to learn to evaluate the claims or arguments made by others.

A part of this change in instructional focus will need to be a change in the nature of lab activities (NRC 2102). Students will need to have more experiences engaging in scientific practices so that lab activities can become more authentic. This is a major shift away from labs driven by prescribed worksheets and data tables to be completed. These activities will have to be thoughtfully constructed so as to be educative and help students develop the required knowledge, skills, abilities, and habits of mind. This type of instruction will require that students receive feedback and learn from their mistakes; hence, teachers will need to develop more strategies to help students learn from their mistakes.

The argument-driven inquiry (ADI) instructional model (Sampson and Gleim 2009; Sampson, Grooms, and Walker 2009, 2011) was designed as a way to make lab activities more authentic and educative for students and thus help teachers promote and support the development of science proficiency. This instructional model reflects research about how people learn science (NRC 1999) and is also based on what is known about how to engage students in argumentation and other important scientific practices (Berland and Reiser 2009; Erduran and Jimenez-Aleixandre 2008; McNeill and Krajcik 2008; Osborne, Erduran, and Simon 2004; Sampson and Clark 2008).
Organization of This Book

The remainder of this book is divided into six sections. Section 1 begins with two chapters describing the ADI instructional model and the development and components of the ADI lab investigations. Sections 2–5 contain the lab investigations, including notes for the teacher, student handouts, and checkout questions. Section 6 contains four appendixes with standards alignment matrixes, timeline and proposal options for the investigations, and a form for assessing the investigation reports.

Safety Practices in the Science Laboratory

It is important for science teachers to make hands-on and inquiry-based lab activities as safe as possible for students. Teachers therefore need to have proper engineering controls (e.g., fume hoods, ventilation, fire extinguisher, eye wash/shower), standard operating safety procedures (e.g., chemical hygiene plan, board of education/school safety policies), and appropriate personal protective equipment (sanitized indirectly vented chemical-splash goggles, gloves, aprons, etc.) in the classroom, laboratory, or field during all hands-on activities. Teachers also need to adopt legal safety standards and enforce them inside the classroom. Finally, teachers must review and comply with all safety polices and chemical storage and disposal protocols that have been established by their school district or school.

Throughout this book, safety precautions are provided for each investigation. Teachers should follow these safety precautions to provide a safer learning experience for students. The safety precautions associated with each activity are based, in part, on the use of the recommended materials and instructions, legal safety compliance standards, and current better professional safety practices. Selection of alternative materials or procedures for these activities may jeopardize the level of safety and therefore is at the user’s own risk. We also recommend that students, before working in the laboratory for the first time, review the National Science Teacher Association’s safety acknowledgment form in the document Safety in the Science Classroom, Laboratory, or Field Sites under the direction of the teacher. This document is available online at www.nsta.org/docs/SafetyInTheScienceClassroomLabAndField.pdf. The students and their parents or guardians should then sign this document to acknowledge that they understand the safety procedures that must be followed during a lab activity. Additional safety compliance resources can be found on the NSTA safety portal at www.nsta.org/safety.
INTRODUCTION

References

Teacher Notes

Lab 18. Environmental Change and Evolution: Which Mechanism of Microevolution Caused the Beak of the Medium Ground Finch Population on Daphne Major to Increase in Size From 1976 to 1978?

Purpose

The purpose of this lab is for students to apply what they know about migration, genetic drift, and natural selection to explain the evolution of beak size in a population of birds. Specifically, this investigation gives students an opportunity to use an existing data set to test three different potential explanations for a case of microevolution. Through this activity, students will have an opportunity to learn how scientists use system models to understand natural phenomena and to learn about the connection between structure and function in living things. Students will also have the opportunity to reflect on the difference between theories and laws in science and on the various methods that scientists can use during an investigation.

The Content

Microevolution is a change in gene frequency in a population over time. A population is a group of organisms that share a common gene pool, and a population of animals is a group of individuals that live in the same area and are able to mate and produce fertile offspring. Figure 18.1 provides an illustration of microevolution in a population of mosquitoes. In this example, a gene for pesticide resistance becomes more common in the mosquito population over time.

There are four basic mechanisms of microevolution: mutation, migration, natural selection, and genetic drift. Any one of these four mechanisms can affect the frequency of a gene in a population. These four mechanisms can also work in combination.

The first mechanism of microevolution is a genetic mutation. A mutation during the DNA replication process can result in an individual being born with a new version of a gene. The individual with the new gene can then have offspring with the same gene. The new gene could then become more common in a population over time. Figure 18.2 provides an illustration of how a genetic mutation can lead to change in the frequency of a gene for pesticide resistance within a population of mosquitoes over time. It is important to note, however, that mutations are rare and only happen in individuals. Genetic mutations therefore cannot result in a big change in the frequency of a gene within a population in only one or two generations.
Environmental Change and Evolution
Which Mechanism of Microevolution Caused the Beak of the Medium Ground Finch Population on Daphne Major to Increase in Size From 1976 to 1978?

FIGURE 18.1
Microevolution in a population of mosquitoes

Note: The white dots within each circle represent the gene for pesticide resistance.

FIGURE 18.2
Microevolution in a population of mosquitoes due to a genetic mutation

Note: The white dots within each circle represent the gene for pesticide resistance.

The second mechanism of microevolution is migration, which is also known as gene flow. Individuals can either join a population (immigration) or leave a population (emigration). A specific version of gene will become less common within a population when several individuals with that gene leave the population, and a specific version of a gene will become more common within a population when several individuals with that gene join the population. The migration of a large number of individuals into or out of a population can therefore result in a dramatic shift in the frequency of a gene within a population in a relatively short period of time. Figure 18.3 (p. 298) provides an illustration of how migration or gene flow can change the frequency of a gene for pesticide resistance in a population of mosquitoes over time.
Natural selection is the third mechanism of microevolution. Natural selection occurs when

- there is variation in a trait among the individuals that make up a population,
- the trait is determined by one or more genes,
- the trait affects survival and/or ability to reproduce, and
- individuals who reproduce pass on their genes to the next generation.

The frequency of a gene in any given generation, as a result, reflects the traits and genes of the individuals that were able to survive long enough to reproduce in the previous generation. Over time, genes that determine traits that are associated with an increased chance of survival and successful reproduction will become more common in a population, and the genes that determine traits that decrease an individual’s chance of survival or reproduction will become less common. Figure 18.4 provides an illustration of how natural selection can change the frequency of the gene for pesticide resistance in a population of mosquitoes over time.

The fourth mechanism of microevolution is genetic drift. In any generation, some individuals may, just by chance, survive longer or leave behind more offspring than other individuals. The frequency of a gene in the next generation will therefore reflect the genes and traits of these lucky individuals rather than individuals with traits that are advantageous in terms of survival or reproduction. This process causes the frequency of genes in a population to change (or drift) over time. Genetic drift tends to act faster and has more drastic results in smaller populations. It also tends to decrease genetic variation in populations.
In this lab, the students study a specific bird population, the medium ground finch (*Geospiza fortis*), that lives in the Galápagos Islands, an archipelago of volcanic islands in the Pacific Ocean. The major factor that affects the survival of these birds is the availability of food. The medium ground finch has a small beak and prefers to eat small seeds with soft shells. In 1977, the islands received very little rain. The plants on the island withered and stopped producing seeds. The medium ground finches quickly depleted the supply of small seeds with soft shells. There were, however, still large seeds with hard shells on the island. The finches with larger beaks were able to crack open and eat the larger seeds, but the smaller-beaked birds were not. The smaller-beaked birds therefore died of starvation and the larger-beaked birds survived the drought and reproduced. The average beak size in the next generation of these finches, as a result, was about 1 mm larger than the previous generation.

Timeline

The instructional time needed to implement this lab investigation is 130–200 minutes. Appendix 2 (p. 355) provides options for implementing this lab investigation over several class periods. Option C (200 minutes) should be used if students are unfamiliar with scientific writing, because this option provides extra instructional time for scaffolding the writing process. You can scaffold the writing process by modeling, providing examples, and providing hints as students write each section of the report. Option D (130 minutes) should be used if students are familiar with scientific writing and have the skills needed to write an investigation report on their own. In option D, students complete stage 6 (writing the investigation report) and stage 8 (revising the investigation report) as homework.
Materials and Preparation

The materials needed to implement this investigation are listed in Table 18.1. The Finch Data.xls file is available at www.nsta.org/publications/press/extras/adi-lifescience.aspx. You should download the file and explore it before beginning the lab investigation. Since this is an “application” lab, students should be familiar with the mechanisms of microevolution before the lab.

The data found in the Finch Data Excel files are based on the published work of Peter R. Grant, B. Rosemary Grant, and their colleagues who have studied the Medium Ground Finches on Daphne Major for the past four decades. The actual data are drawn from the following sources: Boag and Grant 1981, 1984; Grant 1989; Grant and Grant 1980, 2002. The individual bird characteristics, amount of rainfall, and seed type abundance data provide a simplified data set, consistent in all respects with the published data but with fewer data points, to make these data more accessible to students.

TABLE 18.1
Materials list

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer with a spreadsheet application such as Microsoft Excel or Apple Numbers</td>
<td>At least 1 per group</td>
</tr>
<tr>
<td>Finch Data Excel file</td>
<td>At least 1 per group</td>
</tr>
<tr>
<td>Investigation Proposal B (optional)*</td>
<td>1 per group</td>
</tr>
<tr>
<td>Whiteboard, 2’ × 3’†</td>
<td>1 per group</td>
</tr>
<tr>
<td>Lab Handout</td>
<td>1 per student</td>
</tr>
<tr>
<td>Peer-review guide</td>
<td>1 per student</td>
</tr>
<tr>
<td>Checkout Questions</td>
<td>1 per student</td>
</tr>
</tbody>
</table>

* We highly recommend that students fill out an investigation proposal for this lab.
† Students can also use computer and presentation software such as Microsoft PowerPoint or Apple Keynote to create their arguments.

Safety Precautions

Follow all normal lab safety rules.

Topics for the Explicit and Reflective Discussion

Concepts That Can Be Used to Justify the Evidence

To provide an adequate justification of their evidence, students must explain why they included the evidence in their arguments and make the assumptions underlying their
Environmental Change and Evolution

Which Mechanism of Microevolution Caused the Beak of the Medium Ground Finch Population on Daphne Major to Increase in Size From 1976 to 1978?

Analysis and interpretation of the data explicit. In this investigation, students can use the following concepts to help justify their evidence:

- Population dynamics
- Inheritance of traits
- Microevolution
- Mutation
- Migration
- Natural selection
- Genetic drift

We recommend that you review these concepts during the explicit and reflective discussion to help students make this connection.

How to Design Better Investigations

It is important for students to reflect on the strengths and weaknesses of the investigation they designed during the explicit and reflective discussion. Students should therefore be encouraged to discuss ways to eliminate potential flaws, measurement errors, or sources of bias in their investigations. To help students be more reflective about the design of their investigation, you can ask the following questions:

- What were some of the strengths of your investigation? What made it scientific?
- What were some of the weaknesses of your investigation? What made it less scientific?
- If you were to do this investigation again, what would you do to address the weaknesses in your investigation? What could you do to make it more scientific?

Crosscutting Concepts

This investigation is aligned with two crosscutting concepts found in A Framework for K–12 Science Education, and you should review these concepts during the explicit and reflective discussion.

- Systems and system models: Scientists often need to define the system they are studying (e.g., the components of a habitat) and then use a model to understand it. Models can be physical, conceptual, or mathematical.
- Structure and function: In nature, the way a living thing is shaped or structured determines how it functions and places limits on what it can and cannot do. In this investigation, for example, beak shape affected a bird’s ability to eat.
The Nature of Science and the Nature of Scientific Inquiry

This investigation is aligned with two important concepts related to the *nature of science* (NOS) and the *nature of scientific inquiry* (NOSI), and you should review these concepts during the explicit and reflective discussion.

- **The difference between laws and theories in science:** A scientific law describes the behavior of a natural phenomenon or a generalized relationship under certain conditions; a scientific theory is a well-substantiated explanation of some aspect of the natural world. Theories do not become laws even with additional evidence; they explain laws. However, not all scientific laws have an accompanying explanatory theory. It is also important for students to understand that scientists do not discover laws or theories; the scientific community develops them over time.

- **Methods used in scientific investigations:** Examples of methods include experiments, systematic observations of a phenomenon, literature reviews, and analysis of existing data sets; the choice of method depends on the objectives of the research. There is no universal step-by-step scientific method that all scientists follow; rather, different scientific disciplines (e.g., biology vs. physics) and fields within a discipline (e.g., ecology vs. molecular biology) use different types of methods, use different core theories, and rely on different standards to develop scientific knowledge. In this investigation, for example, students use a large data set; they do not conduct a field study.

Hints for Implementing the Lab

- Show students how to use the spreadsheet application as part of the tool talk. At a minimum, students will need to know how to use formulas, make new sheets, and create charts.

- The students should be encouraged to think of ways to use the available data to test the three potential explanations for the evolutionary change in beak size. We recommend that students fill out Investigation Proposal B at the beginning of the lab to help them generate predictions based on each explanation.

- Encourage students to make a copy of the Finch Data Excel file using the “Save as” feature before they start analyzing the data.

- Students can cut and paste the data into new sheets to facilitate analysis.

- A group of three students per computer tends to work well.

- Have students create charts in the spreadsheet application for the argumentation sessions and investigation reports.

- Students may not be able to refute one or more alternative explanations due to limitations in the data set. Be sure to remind students to acknowledge the limitations in the data and then encourage them to think about what other data they would need to determine which explanation is the most valid or acceptable.
Topic Connections
Table 18.2 provides an overview of the scientific practices, crosscutting concepts, disciplinary core ideas, and support ideas at the heart of this lab investigation. In addition, it lists NOS and NOSI concepts for the explicit and reflective discussion. Finally, it lists literacy and mathematics skills (CCSS ELA and CCSS Mathematics) that are addressed during the investigation.

TABLE 18.2
Lab 18 alignment with standards

Scientific practices	• Asking questions and defining problems
	• Developing and using models
	• Planning and carrying out investigations
	• Analyzing and interpreting data
	• Using mathematics and computational thinking
	• Constructing explanations
	• Engaging in argument from evidence
	• Obtaining, evaluating, and communicating information

| Crosscutting concepts | • Systems and system models |
| | • Structure and function |

Core ideas	• LS2: Ecosystems: Interactions, energy, and dynamics
	• LS3: Heredity: Inheritance and variation of traits
	• LS4: Biological evolution: Unity and diversity

Supporting ideas	• Population dynamics
	• Inheritance of traits
	• Microevolution
	• Mutation
	• Migration
	• Natural selection
	• Genetic drift

| NOS and NOSI concepts | • Scientific laws and theories |
| | • Methods used in scientific investigations|

Literacy connections (CCSS ELA)	• Reading: Key ideas and details, craft and structure, integration of knowledge and ideas
	• Writing: Text types and purposes, production and distribution of writing, research to build and present knowledge, range of writing
	• Speaking and listening: Comprehension and collaboration, presentation of knowledge and ideas

Mathematics connections (CCSS Mathematics)	• Make sense of problems and persevere in solving them
	• Reason abstractly and quantitatively
	• Construct viable arguments and critique the reasoning of others
	• Model with mathematics
	• Use appropriate tools strategically
	• Look for and express regularity in repeated reasoning
References
Lab Handout

Lab 18. Environmental Change and Evolution: Which Mechanism of Microevolution Caused the Beak of the Medium Ground Finch Population on Daphne Major to Increase in Size From 1976 to 1978?

Introduction
Bacteria have developed resistance to antibiotics over time. A pesticide that was once highly effective at killing mosquitoes no longer works. House sparrows that live in the northern United States and Canada are larger-bodied than the ones that live in the southern United States and Mexico. These cases are all examples of microevolution, or evolutionary change on a small scale. Microevolution occurs within a population. A population is a group of organisms that live in the same area and mate with each other. Biologists define microevolution as a change in the frequency of one or more genes within a population over time. As specific genes within a population become more or less common over time, the traits that are associated with those genes will also change. There are four basic mechanisms that drive microevolution.

The first mechanism of microevolution is a genetic mutation. A mutation in a gene can result in an individual having a new version of a trait. The individual with the new gene can then have offspring with the same gene. The new gene could then become more common in a population over time. However, since mutations are rare and only happen in individuals, this process alone cannot result in a big change in the frequency of a gene within a population in only one or two generations.

The second mechanism of microevolution is the process of migration. Individuals can either join a population (immigration) or leave a population (emigration). A specific version of a gene will become less common within a population when several individuals with that gene leave the population, and a specific version of a gene will become more common within a population when several individuals with that gene join the population. The migration of a large number of individuals into or out of a population can therefore result in a dramatic shift in the frequency of a gene within a population in a relatively short period of time.

The third mechanism of microevolution is natural selection, which occurs when (a) there is variation in a trait among the individuals that make up a population, (b) the trait is determined by one or more genes, (c) the trait affects survival and/or ability to
reproduce, and (d) individuals who reproduce pass on their genes to the next generation. The frequency of a gene in any given generation, as a result, reflects the traits and genes of the individuals that were able to survive long enough to reproduce in the previous generation. Over time, genes that determine traits that are associated with an increased chance of survival and successful reproduction will become more common in a population, and genes that determine traits that decrease an individual’s chance of survival or reproduction will become less common.

The fourth, and final, mechanism of microevolution is genetic drift. In any generation, some individuals may, just by chance, survive longer or leave behind more offspring than other individuals. The frequency of a gene in the next generation will therefore reflect the genes and traits of these lucky individuals rather than individuals with traits that are advantageous in terms of survival or reproduction.

It is often difficult to determine which of these four mechanisms is responsible for an evolutionary change within a population. To illustrate this point, you will be studying a population of birds called the medium ground finch (*Geospiza fortis*) that lives in the Galápagos Islands, an archipelago made up of a small group of islands located 600 miles off the coast of mainland Ecuador in South America (see Figure L18.1). There is a small island in the Galápagos called Daphne Major (see Figure L18.2).

Biologists Peter and Rosemary Grant have been studying the medium ground finch population on Daphne Major since 1974. They travel to Daphne Major every summer to study these birds. They capture, tag, and measure the physical characteristics of every bird on the island. They also keep track of the ones that die. Finally, and most importantly, they keep track of when a bird breeds, how many offspring it produces, and how many of those offspring survive long enough to breed.

In the summer of 1976, there were 751 finches on Daphne Major when the Grants left the island. The 1976 medium ground finch population had an average beak depth of 9.65 mm and an average beak length of 10.71 mm. In 1977 a severe drought began, and only 20 mm of rain fell on the island over the entire year. Much of the plant life on the island withered and died. The medium ground finches on Daphne Major, as a result, struggled to find food, and the population quickly decreased in size. By the end of 1978, there were only 90 finches left on the island. When the Grants returned to Daphne Major in 1978 to study the
characteristics of the finch population, they made an unexpected discovery. They found that the average size of the beak for the medium ground finch on this island had increased. The 1978 population of the medium ground finch population on Daphne Major had an average beak depth of 10.55 mm and an average beak length of 11.61 mm, which was almost a full mm thicker and longer than the 1976 population. The beak of the medium ground finch population had clearly evolved in only two years.

The dramatic increase in the size of the medium ground finch beak was a clear example of microevolution. The Grants therefore wanted to determine which mechanism of microevolution caused the dramatic change in beak size. After they had analyzed the data that they had collected from 1976 to 1978, the Grants proposed that natural selection was the mechanism that caused the beak of the medium ground finch to increase in size. Some scientists, however, thought that this explanation was unacceptable because the change in the trait happened in only two years, and they viewed natural selection as a slow and gradual process. These scientists suggested that a better explanation for the increase in beak size was migration or genetic drift. In this investigation, you will use the data that the Grants collected on Daphne Major to determine which of these three explanations is the most valid or acceptable.

Your Task

Use the Grant’s finch data set and what you know about migration, natural selection, and genetic drift to determine which of these three mechanisms of microevolution caused the average size of the medium ground finch beak to increase from 1976 to 1978.

The guiding question of this investigation is, **Which mechanism of microevolution caused the beak of the medium ground finch population on Daphne Major to increase in size from 1976 to 1978?**

Materials

You will use an Excel file called Finch Data during this investigation.

Safety Precautions

Follow all normal lab safety rules.

Investigation Proposal Required?

☐ Yes ☐ No

Getting Started

You will need to examine the characteristics of the medium ground finch on Daphne Major before and after the drought of 1977 in order to answer the guiding question for this investigation. Luckily, we know a lot about the physical characteristics of all the medium ground finches found on Daphne Major.
The medium ground finch is a small brown bird (see Figure L18.3). Their brown color helps them blend into their surroundings and avoid the owls that live on the island. (Owls eat small birds.) As with any species, no two medium ground finches are exactly alike. Medium ground finches weigh between 12 and 17 grams and have wings that range in size from 60 mm to 70 mm. These birds also have small beaks. The beak of a medium ground finch ranges in size from 8 mm to 13 mm. The medium ground finch eats seeds (which they must crack open before eating) and the occasional insect.

You may also need to examine the characteristics of the plant life found on Daphne Major before, during, and after the drought of 1977. There are two species of seed-producing plants on Daphne Major: Tribulus terrestris (puncturevine) and Portulaca oleracea (purslane). The Tribulus plants produce large, hard seeds (Figure L18.4) and the Portulaca plants produce small, soft seeds (Figure L18.5). Medium ground finches tend to eat seeds from the Portulaca plants because they are soft and easy to get.

You will be given the observations and measurements collected by the Grants. These data have been entered into an Excel spreadsheet. The spreadsheet will make it easier for you to analyze all the available data. To answer the guiding question for this investigation, however, you must determine what type of data you will need to examine and how you will analyze it. To determine what data you will need to examine and how you will analyze these data, think about the following questions:
Which Mechanism of Microevolution Caused the Beak of the Medium Ground Finch Population on Daphne Major to Increase in Size From 1976 to 1978?

- What would you expect to see if the change in beak size in the 1976 and 1978 populations of the medium ground finch was caused by migration? Natural selection? Genetic drift?
- What types of comparisons will you need to make between the two populations to test each of the three explanations?
- Are there trends or relationships that you will need to look for in the data?
- Are there other factors that may help you test each explanation?

Connections to Crosscutting Concepts, the Nature of Science, and the Nature of Scientific Inquiry

As you work through your investigation, be sure to think about

- the important role that conceptual models play in science,
- the relationship between structure and function in nature,
- the different types of methods that scientists use to answer questions, and
- the difference between laws and theories in science.

Initial Argument

Once your group has finished collecting and analyzing your data, you will need to develop an initial argument. Your argument must include a claim, evidence to support your claim, and a justification of the evidence. The claim is your group’s answer to the guiding question. The evidence is an analysis and interpretation of your data. Finally, the justification of the evidence is why your group thinks the evidence matters. The justification of the evidence is important because scientists can use different kinds of evidence to support their claims. Your group will create your initial argument on a whiteboard. Your whiteboard should include all the information shown in Figure L18.6.

 Argumentation Session

The argumentation session allows all of the groups to share their arguments. One member of each group will stay at the lab station to share that group’s argument, while the other members of the group go to the other lab stations one at a time to listen to and critique the arguments developed by their classmates. This is similar to how scientists present their arguments to other scientists at conferences. If you are responsible for critiquing your classmates’ arguments, your goal is to look for mistakes so these mistakes can be fixed and they can make their argument better. The argumentation session is also a good time to think about ways you can

FIGURE L18.6
Argument presentation on a whiteboard

The Guiding Question:
Our Claim:
Our Evidence:
Our Justification of the Evidence:

Copyright © 2015 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781938946240
make your initial argument better. Scientists must share and critique arguments like this to develop new ideas.

To critique an argument, you might need more information than what is included on the whiteboard. You will therefore need to ask the presenter lots of questions. Here are some good questions to ask:

- What did your group do to analyze the data? Why did your group decide to analyze it that way?
- What other ways of analyzing and interpreting the data did your group talk about?
- Why did your group decide to present your evidence in that way?
- Why did your group abandon the other explanations?
- How sure are you that your group’s claim is accurate? What could you do to be more certain?

Once the argumentation session is complete, you will have a chance to meet with your group and revise your initial argument. Your group might need to gather more data as part of this process. Remember, your goal at this stage of the investigation is to develop the best argument possible.

Report

Once you have completed your research, you will need to prepare an investigation report that consists of three sections that provide answers to the following questions:

1. What question were you trying to answer and why?
2. What did you do during your investigation and why did you conduct your investigation in this way?
3. What is your argument?

Your report should answer these questions in two pages or less. The report must be typed, and any diagrams, figures, or tables should be embedded into the document. Be sure to write in a persuasive style; you are trying to convince others that your claim is acceptable or valid!
Checkout Questions

Lab 18. Environmental Change and Evolution: Which Mechanism of Microevolution Caused the Beak of the Medium Ground Finch Population on Daphne Major to Increase in Size From 1976 to 1978?

Use the following information to answer questions 1–3.

The beach mouse (*Peromyscus polionotus*), shown in the figure below, is a small rodent found in the southeastern United States. It lives primarily in old fields and on white sand beaches. The fur of the beach mouse ranges from dark brown to very light brown. The darkest-color mice tend to live inland, and the lighter-color mice tend to live on light sand beaches.

![A dark brown beach mouse](image)

Some scientists think the trend in the coloration of the beach mouse is due to natural selection, and others think it is due to genetic drift.

1. Describe the process of natural selection, and explain how this process could result in darker-color mice living inland and lighter-color mice living on light sand beaches.
2. Describe the process of genetic drift and explain how this process could result in darker-color mice living inland and lighter-color mice living on light sand beaches.

3. Describe a test that you could conduct to determine if pattern in mouse coloration is due to natural selection or genetic drift.

4. Scientists often use existing models or develop a new model to help understand a system. Explain why models are useful in science, using an example from your investigation about environmental change and evolution.
5. The structures that make up an organism’s body are not related to the functions they perform.

 a. I agree with this statement.
 b. I disagree with this statement.

 Explain your answer, using an example from your investigation about environmental change and evolution.

6. A scientific law describes the behavior of a natural phenomenon, and a scientific theory is a well-substantiated explanation of some aspect of the natural world.

 a. I agree with this statement.
 b. I disagree with this statement.

 Explain your answer, using an example from your investigation about environmental change and evolution.

7. There is no universal step-by-step scientific method that all scientists follow; rather, the choice of method depends on the objectives of the research. Explain why scientists need to use different types of methods to answer different types of questions, using an example from your investigation about environmental change and evolution.
Page numbers printed in boldface type refer to figures or tables.

A
A Framework for K–12 Science Education, xi, xvii, xix, 19, 20, 22
alignment of lab investigations with scientific practices, crosscutting concepts, and core ideas in, 359–350
Abiotic factors, 151–152, 154, 158, 194, 198, 202, 280
Adenosine diphosphate (ADP), 29, 29, 30, 42, 43, 86, 87
Adenosine triphosphate (ATP), 29, 29, 30, 35–36, 42, 43, 44, 86, 87
Alleles, 248–249, 264–265, 270–271, 275
Apple Keynote presentations, 8
Application labs, 19
Aquaporins, 59
Argument-driven inquiry (ADI) model, xi, xx, 3–17
positive outcomes of, 14
role of teacher in, 14–15, 16–17
stages of, 3, 3–14
stage 1: identification of task and guiding question, 4–5
stage 2: designing a method and collecting data, 5–6
stage 3: data analysis and development of tentative argument, 6, 6–9, 8
stage 4: argumentation session, 9–10, 11
stage 5: explicit and reflective discussion, 10–11
stage 6: writing the investigation report, 11–13
stage 7: double-blind group peer review, 13–14, 23
stage 8: revision and submission of investigation report, 14
Argumentation, xvii, xx
components of a scientific argument, 6, 6–7
criteria for evaluation of, 6, 7–8
layout on a whiteboard, 8, 8–9
definition of, xx
role in science, xx
Argumentation session, 4, 9–10, 11. See also specific labs
role of teacher in, 10, 16
Assessment
National Assessment of Educational Progress, xvii
peer-review guide for, 13–14, 21, 22, 23, 365–367
performance of U.S. students on national and international assessments, xvii–xviii, xviii
teaching to conform to high-stakes tests, xvii
B
Biogeochemical cycles, 194, 198, 202
Biomass of plants, 44, 49, 87, 94
Biotic factors, 151–152, 154, 158, 194, 198, 202, 280
Body systems, 116–117, 123–124, 134
Brain, 134–135, 136, 140
Breathing, 30, 36, 40, 108, 116–18, 120, 123–24
Brownian motion, 58
Bug Hunt Camouflage (simulation), 280, 281, 283, 287–288, 288, 289
C
Calories, 100–102, 105, 108–109, 110, 111, 113, 114
Calorimeter, 102–103, 104, 104, 106, 110, 110
Calorimetry, 101
Calvin cycle, 42, 43, 86, 87
Carbon Cycling lab, 212–225
checkout questions for, 224–225
lab handout for, 219–223
argumentation session, 222–223
connections, 222
getting started, 221
Index

initial argument, 222, 222
introduction, 219, 219–220
investigation proposal, 221
materials, 220
report, 223
safety precautions, 221
task and guiding question, 220
teacher notes for, 212–218
content, 212–214, 213
hints for implementing lab, 217
materials and preparation, 215, 215
purpose, 212
timeline, 215
topic connections, 217, 218, 349–353
topics for explicit and reflective discussion, 216–217
use of Carbon Lab simulation for, 212, 215, 217, 220–221
Carbon dioxide (CO₂)
atmospheric, 87, 194, 202, 213–214, 216, 217, 220–221, 224
greenhouse effect and, 214, 220
in cardiovascular respiration, 30, 117–118, 120, 123–124
dissolved in bodies of water, 214, 220
produced by cellular respiration, 28–30, 33, 36–37, 40, 100, 213
use in photosynthesis, 42–43, 47, 49, 50, 55, 86–87, 90, 93, 95, 212, 220
Carbon dioxide (CO₂) gas sensor, 31, 33, 36, 37, 44, 45, 47, 50, 51, 88, 89, 94, 95
Carbon Lab (simulation), 212, 215, 217, 220–221
Cardiovascular Fitness Test Protocol and Tables (Lab Reference Sheet), 128–131, 128–130
Careers in science, xi, xix
Carrying capacity, 152, 154, 288
Cell Structure lab, 72–85
checkout questions for, 84–85
lab handout for, 79–83
argumentation session, 82–83
connections, 81–82
getting started, 81
initial argument, 82, 82
introduction, 79, 80
investigation proposal, 81
materials, 80
report, 83
safety precautions, 81
task and guiding question, 80
teacher notes for, 72–78
content, 72–74, 74
hints for implementing lab, 77
materials and preparation, 74, 75
purpose, 72
safety precautions, 75
timeline, 74
topic connections, 77, 78, 349–353
topics for explicit and reflective discussion, 76–77
Cell theory, 72–73, 76, 79
Cellular respiration, 73
Energy in Food lab, 100–115
interaction of photosynthesis and, 87, 87, 98
Respiratory and Cardiovascular Systems lab, 116–133
Cellular Respiration lab, 28–41
checkout questions for, 40–41
lab handout for, 35–39
argumentation session, 38–39
connections, 37–38
getting started, 37, 27
initial argument, 38, 38
introduction, 35, 35–36
investigation proposal, 37
materials, 36
report, 39
safety precautions, 36
task and guiding question, 36
teacher notes for, 28–34
content, 28, 28–30, 29
hints for implementing lab, 33
materials and preparation, 31, 31
purpose, 28
safety precautions, 32
timeline, 30–31
topic connections, 33, 34, 349–353
topics for explicit and reflective discussion, 32–33

Copyright © 2015 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781938946240
Checkout questions, xxi, 22, 23. See also specific labs
Chlorophyll, 42–44, 46, 49, 73, 86–87, 93, 182
Chloroplasts, 42, 43, 44, 46, 49, 73–74, 77, 86, 93
Circulatory system, 117, 117, 123, 123–124, 134. See also Respiratory and Cardiovascular Systems lab
Citric acid cycle, 29, 29–30
Clades, 316, 316–317, 317, 321, 324, 324–327, 330
Claim, 6, 6–9, 8
Combustion reaction, 100
Common Core State Standards for English language arts (CCSS ELA), xi, 4, 12, 13, 19, 20, 22, 351–352. See also Literacy connections for labs
Common Core State Standards for mathematics (CCSS Mathematics), 4, 19, 20, 22, 352. See also Mathematics connections for labs
Communication skills, xvii, xix. See also Literacy connections for labs
argumentation session, 9–10, 11
explicit and reflective discussion, 10–11
investigation report, 11–14
Computer simulations, 4–5
Carbon Lab, 212, 215, 217, 220–221
Drosophila, 265, 267, 268, 272
Mutations, 248, 252, 254, 258
Wolf Sheep Predation, 166, 168, 170–171, 173, 174, 175
Concentration gradient, 59, 61
Content of labs, 20. See also specific labs
Core ideas, alignment of lab investigations with, xi, xii, xvii, 22, 23, 350
Carbon Cycling, 218
Cell Structure, 78
Cellular Respiration, 34
Descent With Modification and Embryonic Development, 336
Energy in Food, 107
Environmental Change and Evolution, 303
Food Webs and Ecosystems, 187
Matter in Ecosystems, 201
Mechanisms of Evolution, 284
Mechanisms of Inheritance, 269
Memory and Stimuli, 139
Mutations in Genes, 255
Osmosis, 64
Photosynthesis, 48
Phylogenetic Trees and the Classification of Fossils, 48
Population Growth, 157
Predator-Prey Relationships, 171
Respiratory and Cardiovascular Systems, 122
Temperature and Photosynthesis, 92
Variation in Traits, 237
Costs and Exercise Calories (Lab Reference Sheet), 113
Criteria for evaluation of scientific argument, 6, 7–8
Critical thinking skills, xix, 9
Crosscutting concepts, xi, xii, xvii, 11, 21, 23
alignment of lab investigations with, 11, 21, 22, 23, 349–350
Carbon Cycling, 216–217, 218, 222
Cell Structure, 76, 78, 81–82
Cellular Respiration, 32–33, 34, 38–39
Descent With Modification and Embryonic Development, 334–335, 336, 342
Energy in Food, 105, 107, 111
Environmental Change and Evolution, 301, 303, 309
Food Webs and Ecosystems, 186, 187, 190
Matter in Ecosystems, 199, 201, 204
Mechanisms of Evolution, 282–283, 284, 290
Mechanisms of Inheritance, 267, 269, 273
Memory and Stimuli, 137, 139, 142
Mutations in Genes, 253, 255, 259
Osmosis, 62, 64, 68
Photosynthesis, 46, 48, 51
Phylogenetic Trees and the Classification of Fossils, 319, 322, 327
Population Growth, 155, 157, 161
Predator-Prey Relationships, 169–170, 171, 175
Respiratory and Cardiovascular Systems, 120, 122, 126
Temperature and Photosynthesis, 91, 92, 96
Variation in Traits, 235, 237, 241

D
Darwin, Charles, 230–231, 338
Data analysis, 4, 6, 6–9, 8
role of teacher in, 9, 16
Data collection, 4, 5–6
role of teacher in, 16
Decomposition, 194, 207, 208, 212, 213
Deforestation, 152, 214, 216, 220, 221, 224
Deoxyribonucleic acid (DNA), 73, 79, 207–209, 248–251, 250, 253, 256–258
chemical structure of, 249, 249, 256, 256
mitochondrial, 28, 29
mutations of, 250–251, 251, 257, 257, 296
Descent With Modification and Embryonic Development lab, 332–345
checkout questions for, 344–345
lab handout for, 338–343
argumentation session, 342–343
connections, 342
going started, 341
initial argument, 342, 342
introduction, 338–340, 339
investigation proposal, 341
materials, 340
report, 343
safety precautions, 341
task and guiding question, 340
teacher notes for, 332–336
content, 332
hints for implementing lab, 335–336
materials and preparation, 333, 333
purpose, 332
safety precautions, 334
timeline, 333
topic connections, 336, 336, 349–353
topics for explicit and reflective discussion, 334–335
Designing a method and collecting data, 4, 5–6
role of teacher in, 9, 16
Development of a tentative argument, 6, 6–9
choice of medium for, 8–9
example of, 8
goal of, 9
layout on a whiteboard, 8, 8
role of teacher in, 9, 16
Diffusion, 58–59, 65
Digestive system, 117, 123, 134, 140
Drosophila (simulation), 265, 267, 268, 272
Duschl, R. A., xvii

E
Ecosystems
biotic and abiotic factors affecting, 151–152, 154, 158, 194, 198, 202, 280
Carbon Cycling lab, 212–225, 213, 219
Food Webs and Ecosystems lab, 182–193
Matter in Ecosystems lab, 194–211
Energy in Food lab, 100–115
checkout questions for, 114–115
lab handout for, 108–112
argumentation session, 111–112
connections, 111
going started, 110, 110–111
initial argument, 111, 111
introduction, 108–109, 109
investigation proposal, 110
materials, 109
report, 112
safety precautions, 109–110
task and guiding question, 109
Lab Reference Sheet for: Costs and Exercise Calories, 113
teacher notes for, 100–107
content, 100–102
hints for implementing lab, 106
materials and preparation, 102–103, 103
purpose, 100
safety precautions, 104
timeline, 102
topic connections, 106, 107, 349–353
topics for explicit and reflective discussion, 104–106

Environmental Change and Evolution lab, 296–313
checkout questions for, 311–313
lab handout for, 305–310
argumentation session, 309–310
connections, 309
getting started, 307–309, 308
initial argument, 309, 309
introduction, 305–307, 306
investigation proposal, 307
materials, 307
report, 310
safety precautions, 307
task and guiding question, 307
teacher notes for, 296–303
content, 296–299, 297–299
hints for implementing lab, 302
materials and preparation, 300, 300
purpose, 296
safety precautions, 300
timeline, 299
topic connections, 303, 303, 349–353
topics for explicit and reflective discussion, 300–302

Evidence, 6, 6–9, 8
criteria for evaluation of, 6, 7–8
justification of, 6, 6–7

Evolution, 7, 230, 231, 250
Descent With Modification and Embryonic Development lab, 332–345
Environmental Change and Evolution lab, 296–313
Mechanisms of Evolution lab, 280–294
Phylogenetic Trees and the Classification of Fossils lab, 314–331
Explicit and reflective discussion, 4, 10–11
role of teacher in, 10–11, 17
topics for specific labs, 21–22
Carbon Cycling, 216–217
Cell Structure, 76–77
Cellular Respiration, 32–33
Descent With Modification and Embryonic Development, 334–335
Energy in Food, 104–106
Environmental Change and Evolution, 300–302
Food Webs and Ecosystems,
185–186
Matter in Ecosystems, 198–199
Mechanisms of Evolution, 282–283
Mechanisms of Inheritance, 266–267
Memory and Stimuli, 136–137
Mutations in Genes, 253–254
Osmosis, 61–62
Photosynthesis, 46–47
Phylogenetic Trees and the Classification of Fossils, 319–320
Population Growth, 154–155
Predator-Prey Relationships, 169–170
Respiratory and Cardiovascular Systems, 119–121
Temperature and Photosynthesis, 90–91
Variation in Traits, 234–236

F
Food chains, 183–184, 188
Food Webs and Ecosystems lab, 182–193
checkout questions for, 192–193
lab handout for, 188–191
argumentation session, 190–191
connections, 190
getting started, 189–190
initial argument, 190, 190
introduction, 188, 188–189
investigation proposal, 189
materials, 189
report, 191
safety precautions, 189
 task and guiding question, 189
 teacher notes for, 182–187
 content, 182–184, 183
 hints for implementing lab, 187
 materials and preparation, 185, 188
 purpose, 182
 safety precautions, 185
 timeline, 184
 topic connections, 187, 188, 349–353
 topics for explicit and reflective discussion, 185–186
Fossil fuels, 195, 213, 214, 216, 217, 220, 221, 224, 225
Fossils. See Phylogenetic Trees and the Classification of Fossils lab

G
Glycolysis, 29, 29
Greenhouse effect, 214, 220
Group peer review of investigation report, 4, 13–14
 peer-review guide for, 13–14, 21, 22, 23, 365–367
 revisions based on, 14
 role of teacher in, 14, 17
Guiding question. See also specific labs
 components of tentative argument for, 6, 6–7
 designing a method and collecting data for investigation of, 5–6
 identification of, 4

H
Heart rate, 128–131, 128, 130
Heart rate monitor, 118, 119, 125
Hints for implementing labs, 22. See also specific labs
Hooke, Robert, 72–73
Hypertonic solution, 59, 65
Hypotonic solution, 59, 65

I
Identification of task and guiding question, 4, 4–5
 role of teacher in, 4–5, 16
Immune system, 117, 123, 134
Inheritance, 248–249, 256, 280, 282
 chromosomal theory of, 249
 codominance model of, 265, 266, 270, 271
 dominant-recessive model of, 264, 266, 270, 275
 incomplete dominance model of, 264, 266, 270–271, 275
 Mechanisms of Inheritance lab, 264–276
 Mutations in Genes lab, 248–262
Institute of Education Sciences, 19
Instructional materials for labs, 22–23
 checkout questions, 23
 investigation proposal, 5, 23
 lab handout, xxi, 4, 20, 21, 22, 23
 Lab Reference Sheet, 22
 peer-review guide, 13–14, 21, 22, 23, 365–367
Intergovernmental Panel on Climate Change (IPCC), 214
Introduction labs, 19
Investigation proposal, 5, 23, 361. See also specific labs
 Proposal A, 5, 362
 Proposal B, 5, 363
 Proposal C, 5, 364
Investigation report. See also specific labs
 components of, 12
 double-blind group peer review of, 13–14
 peer-review guide for, 13–14, 21, 22, 23, 365–367
 format and length of, 12
 revision and submission of, 14
 writing of, 11–13
Isotonic solution, 59, 65

J
Justification of the evidence, 6, 6–7

L
Lab equipment, 4–5
Lab handouts, xxi, 4, 20, 21, 22, 23. See also specific labs
Lab investigations, xi, 19–23
 alignment with standards, 19, 20, 22, 349–353
 application labs, 19

National Science Teachers Association
authenticity of, xx, 3, 19
changing the focus of instruction for, xx
checkout questions for, 23
ccontent of, 20
definition of, xix
development and testing of, 19–20
to foster development of science proficiency, xix–xx
hints for implementation of, 22
introduction labs, 19
investigation proposal for, 23
limitations of standard format for, xix–xx
materials and preparation for, 21
purpose of, 20
resources for, 19
review and revision of, 19
safety precautions for, xxi, 5, 21
supporting ideas for, 22
teacher notes for, 20–22
timeline for, 20–21
topic connections for, 22, 349–353
topics for explicit and reflective discussion on, 21–22

Lab Reference Sheet, 22
Cardiovascular Fitness Test Protocol and Tables, 128–131, 128–131
Costs and Exercise Calories, 113
The Nitrogen Cycle and the Phosphorus Cycle, 207–209
Three Types of Beetles, 243–245

Law of conservation of mass, 116
Law of conservation of matter, 195, 198, 202, 216
Law of dominance, 248–249
Law of independent assortment, 248–249
Law of segregation, 248–249

Literacy connections for labs, xi, 4, 12, 19, 351–352. See also Common Core State Standards for English language arts
Carbon Cycling, 218
Cell Structure, 78
Cellular Respiration, 34
Descent With Modification and Embryonic Development, 336
Energy in Food, 107
Environmental Change and Evolution, 303
Food Webs and Ecosystems, 187
Matter in Ecosystems, 201
Mechanisms of Evolution, 284
Mechanisms of Inheritance, 269
Memory and Stimuli, 139
Mutations in Genes, 255
Osmosis, 64
Photosynthesis, 48
Phylogenetic Trees and the Classification of Fossils, 322
Population Growth, 157
Predator-Prey Relationships, 171
Respiratory and Cardiovascular Systems, 122
Temperature and Photosynthesis, 92
Variation in Traits, 237

M
Materials and preparation for labs, 21. See also specific labs
Mathematics connections for labs, 4, 19, 352. See also Common Core State Standards for mathematics
Carbon Cycling, 218
Cell Structure, 78
Cellular Respiration, 34
Descent With Modification and Embryonic Development, 336
Energy in Food, 107
Environmental Change and Evolution, 303
Food Webs and Ecosystems, 187
Matter in Ecosystems, 201
Mechanisms of Evolution, 284
Mechanisms of Inheritance, 269
Memory and Stimuli, 139
Mutations in Genes, 255
Osmosis, 64
Photosynthesis, 48
Phylogenetic Trees and the Classification of Fossils, 322
Population Growth, 157
Predator-Prey Relationships, 171
Respiratory and Cardiovascular Systems, 122
Temperature and Photosynthesis, 92
Variation in Traits, 237
Matter in Ecosystems lab, 194–211
checkout questions for, 210–211
lab handout for, 202–206
 argumentation session, 205
 connections, 204
 getting started, 203–204
 initial argument, 204, 205
 introduction, 202–203
 investigation proposal, 203
 materials, 203
 report, 205–206
 safety precautions, 203
 task and guiding question, 203
teacher notes for, 194–201
 content, 194–196, 195
 hints for implementing lab, 199–200
 materials and preparation, 196–197, 197
 purpose, 194
 safety precautions, 198
timeline, 196
 topic connections, 200, 201, 349–353
 topics for explicit and reflective discussion, 198–199
Mechanisms of Evolution lab, 280–294
checkout questions for, 292–294
lab handout for, 286–291
 argumentation session, 290–291
 connections, 290
 getting started, 287–289
 initial argument, 290, 290
 introduction, 286, 286–287
 investigation proposal, 287
 materials, 287
 report, 291
 safety precautions, 287
 task and guiding question, 287
teacher notes for, 264–269
 content, 264–265
 hints for implementing lab, 268
 materials and preparation, 265, 266
 purpose, 264
 safety precautions, 266
timeline, 265
 topic connections, 268, 269, 349–353
 topics for explicit and reflective discussion, 266–267
use of Drosophila simulation for, 265, 267, 268, 272
Mechanisms of Inheritance lab, 264–276
checkout questions for, 275–276
lab handout for, 270–274
 argumentation session, 273–274
 connections, 273
 getting started, 272–273
 initial argument, 273, 273
 introduction, 270–271, 271
 investigation proposal, 272
 materials, 272
 report, 274
 safety precautions, 272
 task and guiding question, 271
teacher notes for, 264–269
 content, 264–265
 hints for implementing lab, 268
 materials and preparation, 265, 266
 purpose, 264
 safety precautions, 266
timeline, 265
 topic connections, 268, 269, 349–353
 topics for explicit and reflective discussion, 266–267
use of Bug Hunt Camouflage simulation for, 280, 281, 283, 287–288, 288, 289
Memory and Stimuli lab, 134–146
checkout questions for, 145–146
lab handout for, 140–144
 argumentation session, 143
 connections, 142
 getting started, 141–142
 initial argument, 142, 143
 introduction, 140
 investigation proposal, 141
 materials, 141
 report, 143–144
 safety precautions, 141
 task and guiding question, 141
teacher notes for, 134–139
content, 134–135
hints for implementing lab, 138
materials and preparation, 135, 136
purpose, 134
safety precautions, 136
timeline, 135
topic connections, 138, 139, 349–353
topics for explicit and reflective
discussion, 136–137
Mendel, Gregor, 248–249, 264, 270
Microevolution. See also Evolution
Descent With Modification and
Embryonic Development lab, 332–345
Environmental Change and Evolution
lab, 296–313
Mitochondria, 28, 28–30, 29, 32, 35, 35, 73, 74, 79
Mutations (simulation), 248, 252, 254, 258
Mutations in Genes lab, 248–262
checkout questions for, 261–262
lab handout for, 256–260
argumentation session, 259–260
connections, 259
getting started, 258
initial argument, 259, 259
introduction, 256–257, 256–257
investigation proposal, 258
materials, 258
report, 260
safety precautions, 258
task and guiding question, 258
teacher notes for, 248–255
content, 248–251, 249–251
hints for implementing lab, 254
materials and preparation, 252, 252
purpose, 248
safety precautions, 252
timeline, 251–252
topic connections, 254, 255, 349–353
topics for explicit and reflective
discussion, 253–254
use of Mutations simulation for, 248,
252, 254, 258
N
National Assessment of Educational
Progress, xvii
National Research Council (NRC), xi, xvii,
xix, xx
National Science Teachers Association
(NSTA), xxi
The Nation’s Report Card: Science 2009,
xvii
Natural selection
Descent With Modification and
Embryonic Development lab, 332–345
Environmental Change and Evolution
lab, 296–313
Mechanisms of Evolution lab, 280–294
Variations in Traits lab, 230
Nature of science (NOS) and nature of
scientific inquiry (NOSI) concepts,
alignment of lab investigations with, 11,
19, 20, 21, 22, 23, 353
Carbon Cycling, 217, 218, 222
Cell Structure, 77, 78, 81–82
Cellular Respiration, 33, 34, 38–39
Descent With Modification and
Embryonic Development, 335, 336, 342
Energy in Food, 105–106, 107, 111
Environmental Change and Evolution,
302, 303, 309
Food Webs and Ecosystems, 186, 187, 190
Matter in Ecosystems, 199, 201, 204
Mechanisms of Evolution, 283, 284, 290
Mechanisms of Inheritance, 267, 269, 273
Memory and Stimuli, 137, 139, 142
Mutations in Genes, 254, 255, 259
Osmosis, 62, 64, 68
Photosynthesis, 47, 48, 51
Phylogenetic Trees and the
Classification of Fossils, 320, 322, 327
Population Growth, 155, 157, 161
Predator-Prey Relationships, 170, 171, 175
Respiratory and Cardiovascular Systems, 120–121, 122, 126
Temperature and Photosynthesis, 91, 92, 96
Variation in Traits, 235–236, 237, 241
Nervous system, 117, 123, 132, 134, 140
Next Generation Science Standards (NGSS), xi, xii
Nitrogen cycle, 207, 207–208
The Nitrogen Cycle and the Phosphorus Cycle (Lab Reference Sheet), 207–209
Nutrition facts food labels, 108, 109

Ocean acidification, 214, 220
Organelles, 62, 73, 74, 76, 79, 80
chloroplasts, 42, 43, 44, 46, 49, 73–74, 77, 86, 93
mitochondria, 28, 28–30, 29, 32, 35, 35, 73, 74, 79
Organisation for Economic Co-operation and Development (OECD), xvii
Osmosis lab, 58–71
checkout questions for, 70–71
lab handout for, 65–69
argumentation session, 68–69
connections, 68
getting started, 66–67, 67
initial argument, 68, 68
introduction, 65, 65–66, 66
investigation proposal, 66
materials, 66
report, 69
safety precautions, 66
task and guiding question, 66
teacher notes for, 58–64
content, 58, 58–59, 59
hints for implementing lab, 62–63
materials and preparation, 60, 60
purpose, 58
safety precautions, 61
timeline, 59–60
topic connections, 63, 64, 349–353
topics for explicit and reflective discussion, 61–62
Oxygen (O2)
atmospheric, 87, 93, 194, 202
in cardiovascular respiration, 30, 117–118, 120, 123–124
dissolved in bodies of water, 196, 197, 214
passage through cell membrane, 58, 65
produced by photosynthesis, 42–43, 47, 49, 50, 86–88, 90, 93
use in cellular respiration, 28–30, 33, 36–37, 40, 100, 120, 213
Oxygen (O2) gas sensor, 31, 33, 36, 37, 44, 45, 47, 50, 51, 88, 89, 95, 95

Peer review of investigation report, 4, 13–14
peer-review guide for, 13–14, 21, 22, 23, 365–367
revisions based on, 14
role of teacher in, 14, 17
Personal protective equipment, xxi
Phosphorus cycle, 209, 209
Photosynthesis, 30
c hemical equation for, 43, 49, 86, 93
definition of, 42, 49, 86, 93
Temperature and Photosynthesis lab, 86–99
Photosynthesis lab, 42–56
checkout questions for, 54–56
lab handout for, 49–53
argumentation session, 52–53
connections, 51
getting started, 50–51, 51
initial argument, 52, 52
introduction, 49, 49
investigation proposal, 50
materials, 50
report, 53
safety precautions, 50
task and guiding question, 50
teacher notes for, 42–48
content, 42, 42–44, 43
hints for implementing lab, 47
materials and preparation, 44, 45
purpose, 42
safety precautions, 45
timeline, 44
topic connections, 47, 48, 349–353
Index

topics for explicit and reflective discussion, 46–47
Phylogenetic Trees and the Classification of Fossils lab, 314–331
cHECKOUT QUESTIONS FOR, 330–331
lab handout for, 323–329
argumentation session, 328
connections, 327
getting started, 327
initial argument, 327–328, 328
introduction, 323–326, 323–326
investigation proposal, 326
materials, 326
report, 328–329
safety precautions, 326
task and guiding question, 326
teacher notes for, 314–322
content, 314–318, 315–317
hints for implementing lab, 321, 321
materials and preparation, 318, 318–319
purpose, 314
safety precautions, 319
timeline, 318
topic connections, 321–322, 322, 349–353
topics for explicit and reflective discussion, 319–320
Population Growth lab, 150–165
cHECKOUT QUESTIONS FOR, 164–165
lab handout for, 158–163
argumentation session, 162–163
connections, 161
getting started, 160–161
initial argument, 162, 162
introduction, 158
investigation proposal, 160
materials, 159
report, 163
safety precautions, 159–160
task and guiding question, 159, 159
teacher notes for, 150–157
content, 150–152, 151
hints for implementing lab, 155–156
materials and preparation, 153, 153
purpose, 150
safety precautions, 154
timeline, 152
topic connections, 156, 157, 349–353
topics for explicit and reflective discussion, 154–155
PowerPoint presentations, 8
Predator-Prey Relationships lab, 166–179
cHECKOUT QUESTIONS FOR, 178–179
lab handout for, 173–177
argumentation session, 176
connections, 175
going started, 174–175
initial argument, 175, 176
introduction, 173
investigation proposal, 174
materials, 174
report, 176–177
safety precautions, 174
task and guiding question, 173
teacher notes for, 166–171
content, 166–168, 168
hints for implementing lab, 170–171
materials and preparation, 168, 168
purpose, 166
safety precautions, 169
timeline, 168
topic connections, 171, 171, 349–353
topics for explicit and reflective discussion, 169–170
use of Wolf Sheep Predation simulation for, 166, 168, 170–171, 173, 174, 175
Preparation for labs, 21. See also specific labs
Programme for International Student Assessment (PISA), xvii–xviii, xviii
Purpose of labs, 20. See also specific labs
R
Reading comprehension strategies, 4. See also Literacy connections for labs
Respiratory and Cardiovascular Systems lab, 116–133
checkout questions for, 132–133
lab handout for, 123–127
 argumentation session, 126–127
 connections, 126
 getting started, 125
 initial argument, 126, 126
 introduction, 123, 123–124
 investigation proposal, 125
 materials, 124
 report, 127
 safety precautions, 125
 task and guiding question, 124
Lab Reference Sheet for:
 Cardiovascular Fitness Test Protocol and Tables, 128–131, 128–130
teacher notes for, 116–122
 content, 116–118, 117
 hints for implementing lab, 121
 materials and preparation, 118, 119
 purpose, 116
 safety precautions, 119
 timeline, 118
 topic connections, 121, 122, 349–353
topics for explicit and reflective discussion, 119–121
Resting metabolic rate, 108–109
Revision and submission of investigation report, 4, 14
role of teacher in, 17
Ribonucleic acid (RNA), 73, 250, 250, 250, 250, 253, 256, 258
Safet
Safety precautions, xxi, 5, 21. See also specific labs
Schweingruber, H. A., xvii
Science proficiency, xi
definition and components of, xvii
labs to foster development of, xix–xx
performance of U.S. students on national and international assessments, xvii–xviii, xviii
vs. teaching that emphasizes breadth over depth, xvi–xix
Scientific explanations, xvii, 3
Scientific habits of mind, xvii, xix–xx, 10
Scientific knowledge, xvii, xx, 10
Scientific practices, xi, xii, xvii, xix, xx, 3
 alignment of lab investigations with, 3, 5, 22, 349
 Carbon Cycling, 218
 Cell Structure, 78
 Cellular Respiration, 34
 Descent With Modification and Embryonic Development, 336
 Energy in Food, 107
 Environmental Change and Evolution, 303
 Food Webs and Ecosystems, 187
 Matter in Ecosystems, 201
 Mechanisms of Evolution, 284
 Mechanisms of Inheritance, 269
 Memory and Stimuli, 139
 Mutations in Genes, 255
 Osmosis, 64
 Photosynthesis, 48
 Phylogenetic Trees and the Classification of Fossils, 322
 Population Growth, 157
 Predator-Prey Relationships, 171
 Respiratory and Cardiovascular Systems, 122
 Temperature and Photosynthesis, 92
 Variation in Traits, 237
Senses, 134–135, 136, 140
Shouse, A. W., xvii
Speciation, 231, 314, 323, 323
Supporting ideas for labs, 22
 Carbon Cycling, 218
 Cell Structure, 78
 Cellular Respiration, 34
 Descent With Modification and Embryonic Development, 336
 Energy in Food, 107
 Environmental Change and Evolution, 303
 Food Webs and Ecosystems, 187
 Matter in Ecosystems, 201
 Mechanisms of Evolution, 284
 Mechanisms of Inheritance, 269
 Memory and Stimuli, 139
 Mutations in Genes, 255
 Osmosis, 64
Index

Photosynthesis, 48
Phylogenetic Trees and the Classification of Fossils, 322
Population Growth, 157
Predator-Prey Relationships, 171
Respiratory and Cardiovascular Systems, 122
Temperature and Photosynthesis, 92
Variation in Traits, 237

T
Taxonomy, 231, 231, 234, 238
Teacher notes for labs, 20–22. See also specific labs
cost, 20
hints for implementing lab, 22
materials and preparation, 21
purpose, 20
safety precautions, 21
timeline, 20–21
topic connections, 22, 349–353
topics for explicit and reflective discussion, 21
Teacher’s roles in argument-driven inquiry, 14–15, 16–17
Temperature and Photosynthesis lab, 86–99
checkout questions for, 98–99
lab handout for, 93–97
argumentation session, 96–97
connections, 96
getting started, 95, 95–96
initial argument, 96, 96
introduction, 93, 93–94
investigation proposal, 95
materials, 94
report, 97
safety precautions, 94–95
task and guiding question, 94
teacher notes for, 86–92
content, 86, 86–88, 87
hints for implementing lab, 91
materials and preparation, 88, 89
purpose, 86
safety precautions, 90
timeline, 88
topic connections, 92, 92, 349–353

topics for explicit and reflective discussion, 90–91
Tentative argument
argumentation session on, 9–10, 11
development of, 6, 6–9, 8
modification of, 9, 11
Three Types of Beetles (Lab Reference Sheet), 243–245
Timelines for labs, 20–21. See also specific labs
Option A, 355
Option B, 356
Option C, 357
Option D, 358
Option E, 359
Option F, 360
Topic connections for labs, 22, 349–353.
See also specific labs

V
Variation in Traits lab, 230–247
checkout questions for, 246–247
lab handout for, 238–242
argumentation session, 241–242
connections, 241
going started, 240–241
initial argument, 241, 241
introduction, 238–239, 239
investigation proposal, 240
materials, 240
report, 242
safety precautions, 240
task and guiding question, 240
Lab Reference Sheet for: Three Types of Beetles, 243–245
teacher notes for, 230–237
content, 230–232, 231–233
hints for implementing lab, 236
materials and preparation, 233, 234
purpose, 230
safety precautions, 234
timeline, 233
topic connections, 236, 237, 349–353
topics for explicit and reflective discussion, 234–236
W
Wolf Sheep Predation (simulation), 166, 168, 170–171, 173, 174, 175
Writing the investigation report, 4, 11–13
role of teacher in, 12–13, 17
Are you interested in using argument-driven inquiry for middle school lab instruction but just aren't sure how to do it? *Argument-Driven Inquiry in Life Science* will provide you with both the information and instructional materials you need to start using this method right away. The book is a one-stop source of expertise, advice, and investigations to help life science students work the way scientists do.

The book is divided into two basic parts:

1. **An introduction to the stages of argument-driven inquiry**—from question identification, data analysis, and argument development and evaluation to double-blind peer review and report revision.

2. **A well-organized series of 20 field-tested labs** designed to be much more authentic for instruction than traditional laboratory activities. The labs cover topics in four broad areas of life science: molecules and organisms, ecosystems, biological evolution, and heredity. You can use the introduction labs to acquaint students with new content or the application labs for deeper exploration of the use of a theory, law, or unifying concept.

 The authors are veteran teachers who know your time constraints, so they designed the book with easy-to-use reproducible student pages, teacher notes, and checkout questions. The labs are also aligned with today's standards and will help your students learn the core ideas, crosscutting concepts, and scientific practices found in the *Next Generation Science Standards*. In addition, they offer ways for students to develop the disciplinary skills outlined in the *Common Core State Standards*.

 Many of today’s middle school teachers—like you—want to find new ways to engage students in scientific practices and help students learn more from lab activities. *Argument-Driven Inquiry in Life Science* does all of this while also giving students the chance to practice reading, writing, speaking, and using math in the context of science.