Uncovering Student Ideas in Science

25 Formative Assessment Probes

By Page Keeley, Francis Eberle, and Lynn Farrin
Contents

Preface
- Overview ... vii
- Need for Formative Assessment Tools in Science ... ix
- Development and Use of the Probes .. ix
- Next Steps .. xi
- Acknowledgments ... xi
- About the Authors .. xii

Introduction
- Classroom Assessment .. 1
- What Is a Formative Assessment Probe? .. 3
- Assessment Probe Design and Features .. 4
- Formative Assessment Probes in This Book .. 7
- Using the Probes ... 8
- Teacher Notes That Accompany the Probes .. 9
- Vignettes .. 13
 - Elementary: Using the Probe “Is It an Animal?” .. 13
 - Middle School: Using the Probe “Wet Jeans” ... 16
 - High School: Using the Probe “Is It Matter?” .. 18
- Concept Matrices and Probe Set ... 21

Physical Science Assessment Probes
- Concept Matrix ... 24
- Can It Reflect Light? .. 25
- Apple in the Dark ... 31
- Birthday Candles ... 37
- Making Sound .. 43
- Ice Cubes in a Bag .. 49
- Lemonade .. 55
- Cookie Crumbles ... 61
8 Seedlings in a Jar ...67
9 Is It Melting? ...73
10 Is It Matter? ...79
11 Is It Made of Molecules? ...85
12 The Rusty Nails ...91
13 Talking About Gravity ..97
14 The Mitten Problem ..103
15 Objects and Temperature ...109

Life, Earth, and Space Science
Assessment Probes

Concept Matrix ...116
16 Is It an Animal? ..117
17 Is It Living? ...123
18 Is It Made of Cells? ...131
19 Human Body Basics ..139
20 Functions of Living Things ..147
21 Wet Jeans ...155
22 Beach Sand ...163
23 Mountain Age ..169
24 Gazing at the Moon ...177
25 Going Through a Phase ..183
Overview
Assessment is one of the most pervasive and complex issues dominating today’s education landscape. Assessments that document and measure the extent of student achievement are summative in nature. Formative assessments are used to gather information about student learning throughout the teaching and learning process. This information is used to adjust instruction as well as to provide feedback to students. Too often the term *assessment* is used synonymously with the end products of instruction and student learning such as quizzes, tests, performance tasks, and standardized tests. This misconception about the use and types of assessment minimizes its complex nature, stages, and purposes (Atkin and Coffey 2003, p. xi).

In the recent urgency to meet federal, state, and district mandates for greater accountability, the amount of time, resources, and emphasis on assessment has tilted considerably toward the summative side. This “weighted” shift toward summative assessment has led to more standardized testing of students, often with only marginal gains in achievement. When student test scores fail to rise significantly, the usual response has been to repeat the cycle of more testing and test preparation. This cycle reduces the time teachers spend on identifying problematic areas of student learning at the beginning of instruction and monitoring for conceptual change.

On the other side of the assessment scale, formative assessment, when used deliberately and effectively, helps teachers find out what
Preface

their students think and know at the beginning and throughout an instructional sequence. One way teachers use this assessment information is to adjust and monitor learning and to determine when students are ready to demonstrate their learning. This type of formative assessment, which is the form of assessment addressed in this book, is inextricably linked to instruction.

Recent studies and reports validate the need to place more emphasis on formative assessment in order to create a balanced system of assessment in science classrooms (Black and Harrison 2004; Black and Wiliam 1998; Bransford, Brown, and Cocking 1999). The need to balance the assessment scale by transferring some of the weight to the formative assessment side is as urgent and may be more effective in improving achievement in the long run than the short-term demand to raise test scores. Results from national and international studies provide compelling evidence that the purposeful use of formative assessment improves student learning in science, particularly with low-performing groups. These results include evidence that when formative assessment is used well, it can actually help to raise students’ test scores (Black et al. 2003).

In addition, a recent report on educational assessment from the National Research Council included the recommendation that “the balance of mandates and resources should be shifted from an emphasis on external forms of assessment to an increased emphasis on classroom formative assessment designed to assist learning” (Pellegrino, Chudowsky, and Glaser 2001, p. 14).

This book reflects efforts by the authors to provide support and resources to teachers for just one of the purposes of formative assessment. The formative assessment emphasized in this book is for learning about students’ ideas in order to inform teaching. This type of assessment for learning is grounded in research and is based on one of the foundational ideas in How People Learn: Brain, Mind, Experience, and School: “Students come to the classroom with preconceptions about how the world works. If their initial understanding is not engaged, they may fail to grasp the new concepts and information that are taught, or they may learn for purposes of a test, but revert to their preconceptions outside the classroom” (Bransford, Brown, and Cocking 1999, p. 14).

Assessment, whether it is formative or summative, is not value free as there is no perfect educational practice and hence no perfect educational assessment (Hein and Price 1994). The best we may be able to accomplish, which is an underlying premise of this book, is to achieve balance in assessment. Our hope is that the use and examples of one strategy for formative assessment—the formative assessment probes in this book—contribute to bringing balance into assessment by helping teachers discover the power of knowing what their own students think about core ideas in science and using the information to improve conceptual learning through effective teaching. As Malcolm Gladwell (2000) describes in his book The Tipping Point: How Little Things Can Make a Big Difference, the “tipping point” is that magical moment when an idea crosses
a threshold, “tips,” and spreads like wildfire. It is our hope that the use of these probes will spread among educators, bring a new vitality to assessment and instruction, and tip the scale back in order to balance assessment for learning with assessment of learning.

Need for Formative Assessment Tools in Science

Formative assessment has been used routinely over the years by science teachers to find out what their students know and can do. Teachers continue to seek out effective, ready-made, well-designed questions and strategies that will help them to uncover what their students are actually thinking and to build a bridge between those ideas and the scientific ideas articulated in national and state science standards. Once teachers realize the untapped potential of teacher- and student-friendly formative assessment to significantly improve teaching practice, student learning, and even standardized test results, it may eventually become the most pervasive form of assessment in the classroom.

Developing any type of quality assessment or lesson is a challenging and time-intensive process for teachers, who already have full teaching schedules and other responsibilities. To design probing questions that reveal students’ preconceptions, teachers need to have good subject matter knowledge, but not necessarily the kind of content knowledge that is developed through an advanced study of science (Black et al. 2003). Effective teachers need to thoroughly understand the basic ideas appropriate for their students, the students’ preconceptions, and ways to respond to student thinking. Teachers also need to develop their pedagogical content knowledge (Shulman 1986), knowing the aspects of subject matter that cause students particular difficulties and knowing how to design learning paths to overcome these difficulties.

A wide range of summative assessments and instructional materials is available to science teachers, but few resources provide ready-made science formative assessments that can also enhance and support teachers’ pedagogical content knowledge. We call the type of formative assessments provided in this book probes and we describe them in more detail in the Introduction. Teachers urgently need this type of field-tested, content-aligned, easy-to-administer, and quick-to-analyze formative assessment.

These probes can be used with different state standards and instructional materials because they are based on core science concepts, most of which cut across multiple grade levels. This book provides 25 assessment probes with supporting background material for teachers that connects the purpose for which the assessment was designed with key concepts, content explanations, developmental considerations, national standards, research on learning, suggested instructional strategies, and additional resources so that they may be used by any teacher in any instructional context.

Development and Use of the Probes

The assessment probes included in this book
were purposely developed to elicit students’ thinking about specific ideas in science. Several of these ideas have been identified as difficult for students to learn due to their abstract or counterintuitive nature. The probes were not designed to be used for summative purposes, but rather as a sort of “temperature taking” to inform instruction. Each probe has been field tested with several teachers and classes of diverse student backgrounds and revised in order to effectively target the specific idea(s) the probe is designed to uncover. The field tests included hundreds of students across multiple grade levels, allowing the field testers to identify grade levels at which students’ ideas are beginning to develop as well as grade levels at which certain ideas, though taught previously, have not been learned.

We do not claim that the assessment probes in this book are reliable and valid assessment items in the technical sense that is needed for summative assessment purposes. They are designed to find out what students think about particular foundational concepts identified in the national standards and cognitive research literature. (Note: By “national standards,” we are referring here and throughout the book to National Science Education Standards [NRC 1996] and to Benchmarks for Science Literacy [AAAS 1993].) In many cases, there is no one “right” answer. It is the students’ explanations that reveal the students’ thinking about the ideas and provide insight to the teachers as to next steps for instruction. The specific ideas targeted by a probe may or may not be included in a particular teacher’s or grade level’s curriculum; however, they can still be used to gather data that will inform instruction of related ideas, trace the development of thinking across multiple grade levels, or determine whether instruction in prior grade levels helped students develop scientific ideas. Although some of the probes target a specific grade-level standard, we would caution against using these probes as a summative assessment of students. Rather, the assessment probes included in this volume can provide information about:

- How students’ ideas may differ from one grade level to the next
- How ready individual students are for instruction
- Ideas students have before instruction
- Whether conceptual change is occurring
- Whether students retain the accepted scientific ideas years after instruction or revert back to their prior knowledge
- Gaps that exist in a school’s or district’s curriculum

The probes included in this book were not designed for use in a traditional research context with control groups or in comparisons before and after instruction. While our focus is on helping teachers learn more about their students’ ideas for the purpose of improving instruction, the probes could be used for practitioner research into student thinking. The probes can serve as a bridge between formal research findings about students’ ideas and their practical application in the science classroom.
Next Steps
This book is planned as a series of assessment probe books, each volume describing a new application as well as including new probes. In the next volume of *Uncovering Student Ideas in Science*, we will describe strategies for using the probes during instruction to help your students experience conceptual change. In the third volume, we will address ways to use the probes for professional development.

References

Acknowledgments
The assessment probes in this book have been extensively field tested and piloted with hundreds of students in Maine, New Hampshire, and Vermont by the Maine Mathematics and Science Alliance (MMSA). We would like to thank the teachers in the National Science Foundation–funded Northern New England Co-Mentoring Network (NNECN) (www.nnecn.org), Maine’s Governor’s Academy for Science Education Leadership, and participants in various MMSA professional development programs for their willingness to field test and pilot items, share student data, and contribute ideas for additional assessment probe development. In particular we would like to acknowledge the following teachers for their contributions to this project:

Judith Allard, VT; Dr. Pasco Avery, ME; Julie Barry, ME; Mary Belisle, ME; Anita Bernhardt, ME; Lise Boefinger, NH; Tracy Brichchi, NH; Ruth Bither-Broene, ME; Linda
Preface

Brasseur, VT; Nancy Chesley, ME; Gay Craig, VT; Lisa Damian-Marvin, ME; Linda D’apolito, ME; Laurette Darling, ME; Steve Deangelis, ME; Mary Dunn, ME; Dalene Dutton, ME; Sandra Ferland, ME; Barbara Fortier, ME; Sharon Gallant, ME; Lauree Gott, ME; Anne Guerriero, NH; Douglas Hodhum, NH; Erin Hubbard, NH; Anita Hopkins, ME; Ricia Hyde, ME; Lisa Jerals, ME; Vincent Johnson, ME; Kathleen King, ME; Peggy Labrosse, NH; Axel Larson, ME; Cindy Langdon, ME; Gary LaShure, VT; Christine Mara, ME; Wes Marble, ME; Margo Murphy, ME; Andrew Njaa, ME; Laurie Olmsted, ME; Dr. Lois Ongley, ME; Jack O’Reilly, NH; Beth Paradis, ME; Tia Pass, ME; LuAnn Pigeon, NH; Ingrid Porter, ME; Andrew Sarto, ME; Greg Renner, VT; Steven Rice, ME; Suzi Seluki, ME; Katy Snider, NH; Emily Stuart, ME; Ingrid Thomas, ME; Jane Voth-Palisi, NH; J. David White, ME; Mary Whitten, ME.

We also thank the following individuals for their reviews of this book: Richard Audet, associate professor of science education, Roger Williams University; Mistilina Sato, assistant professor of teacher development and science education, University of Minnesota, Twin Cities; and Joyce Tugel, science specialist, Eisenhower Regional Alliance at TERC, Cambridge, MA.

About the Authors

Page Keeley, senior science program director, Francis Eberle, executive director, and Lynn Farrin, science associate, all work at the Maine Mathematics and Science Alliance (MMSA) in Augusta, Maine, where they develop, support, and coordinate various science education initiatives throughout Maine and northern New England. Combined, they have a total of over 25 years of teaching experience in middle and high school science; Page and Francis have also served as adjunct instructors in the University of Maine system. Their work with teachers, schools, and organizations includes the areas of professional development, leadership, standards, curriculum development, assessment, and school reform. The authors currently serve as PIs, co-PIs, and senior personnel on four National Science Foundation grants, actively serve on state and national advisory boards and committees, and frequently present their work at National Science Teachers Association conventions.
Classroom Assessment

In the broadest sense of the word, assessment is something we do all the time. We encounter a new situation, make a judgment about what is happening, and decide what to do next. The evidence of our encounters continually shapes and reshapes our actions. Our actions may be more effective if we are flexible—that is, if we are prepared to modify our intentions in light of events. They might also be more effective if we probe the situation carefully in order to ensure that we understand what is going on before jumping to conclusions. (Black et al. 2003, p. 6)

Classroom assessment occurs every day, most often as formative assessment. “The first thing that comes to mind for many people when they think of ‘classroom assessment’ is a midterm or end of course exam, used by the teacher for summative grading purposes. But such practices represent only a fraction of the kinds of assessments that occur on an ongoing basis in an effective classroom” (Pelligrino, Chudowsky, and Glaser 2001, p. 225). Everyday classroom assessment is unique to your classroom context. It depends more on the skills, knowledge, and priorities you and your students have than on any particular protocol or strategy (Atkin and Coffey 2003, p. xi). Throughout the course of a unit or lesson, you assess students using various formats, including individual, small-group, or whole-class elicitation questions; student interviews; observations; informal conversations; journaling; performance tasks; even traditional assessments such as quizzes or tests during or after a lesson.

Classroom assessment is continuous and
Introduction

provides you with a rich set of data about student learning. However, for the assessment to be considered “formative,” you must use the data to modify your curriculum, alter your teaching, or provide feedback to your students. Classroom assessment serves multiple purposes, including diagnosing, monitoring, providing feedback, and measuring. Each of these assessment purposes links to various stages in your instructional sequence as described in Figure 1.

A key stage in the instructional sequence is elicitation. Elicitation gives students the opportunity to make their ideas and reasons explicit as they begin the study of a unit topic. It engages them and also alerts them to what they will be thinking and learning about in the upcoming instruction. “By providing the opportunity to articulate their initial conceptions and to clarify these ideas, the elicitation questions and subsequent discussions help students begin building new, more powerful conceptions” (Minstrell and van Zee 2003, p. 62).

In a similar vein, another group of researchers put it this way:

Knowledge of children’s learning and the development of expertise clearly indicates that assessment practices should focus on making students’ thinking visible to themselves and to others by drawing out their current understandings so that instructional strategies can be selected to support an appropriate course for future learning. In particular, assessment practices should focus on identifying the preconceptions children bring to learning settings. (Pelligrino, Chudowsky, and Glaser 2001, p. 91)

Using the probes provided in this book at the elicitation and exploration and concept development stages of instruction is consistent with the current research on how students learn and with recommendations for

<table>
<thead>
<tr>
<th>Type of Classroom Assessment</th>
<th>Purpose</th>
<th>Link to Stage in an Instructional Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formative (pre-instruction)</td>
<td>Diagnostic—to find out students’ existing ideas</td>
<td>Elicitation Stage—Used prior to developing instruction or during the instructional sequence when new ideas are encountered.</td>
</tr>
<tr>
<td>Formative</td>
<td>To monitor student learning and/or to provide feedback to students on their learning</td>
<td>Exploration and Concept Development Stage—Used continuously throughout the instructional sequence.</td>
</tr>
<tr>
<td>Summative</td>
<td>To measure the extent to which students have achieved a learning goal</td>
<td>Application Stage—Used primarily at the end of an instructional sequence.</td>
</tr>
</tbody>
</table>

Note: The assessment probes provided in this book are formative in nature and are designed to be used during the elicitation and exploration and concept development stages of an instructional sequence.
Introduction

What Is a Formative Assessment Probe?

The assessment examples in this book, which we call probes, are formative in nature. They are used primarily for diagnostic and monitoring purposes. They are assessments for learning, not assessments of learning. While several of these probes could indeed serve to summatively assess your students’ learning, their primary purpose is not to measure the extent to which your students achieved proficiency in science subject matter knowledge, but rather to reveal the types of conceptions your students have about common science concepts before and throughout instruction. “Students enter the study of science with a vast array of such preconceptions based on their everyday experiences. Teachers will need to engage those ideas if students are to understand science” (Donovan and Bransford 2005, p. 399). The probes in this book shift the focus from measuring and documenting student learning to examining student thinking for the purpose of informing teaching and learning.

This book focuses on formative assessments that will enable you to probe for and quickly and efficiently examine a multitude of possible ideas your students hold, including misconceptions, naive thoughts, and incomplete ideas. (Many educators and researchers prefer to collectively call these ideas alternative frameworks rather than misconceptions—meaning that students’ ideas are not always wrong, even though they may differ from those of a scientist [Sneider 2003].) The probes also uncover the correct ideas your students hold and the critical-thinking and reasoning strategies they use to support their ideas. These strategies can be based on intuition, logic, everyday experiences, or scientific knowledge.

Why is it important for you to take the time to uncover the preconceptions your students have? Research has shown that preconceived ideas in science develop early in a student’s K–12 experience and can be tenacious (Donovan and Bransford 2005; Bransford, Brown, and Cocking 1999). Through their daily, informal experiences with objects and phenomena, students develop ideas and schema for organizing and explaining scientific concepts even before they are formally taught scientific ideas in school. Sometimes these ideas are congruent with scientific knowledge. Other times they conflict with the scientific view. This formation of students’ own conceptions, which may be correct, partially correct, or incorrect, continues throughout their K–12 school years regardless of whether or not the ideas are taught in science class. If these ideas are ignored, they may get in the way when new ideas are introduced. They simply do not go away, even as students progress from elementary grades to middle school and even into high school and adulthood. Surprisingly, many of the probes in this book reveal that high school students have partially understood ideas and misconceptions that are not much different from those of their elementary school counterparts.

Thus, a major challenge for science teachers is to build conceptual bridges from stu-
Introduction

Students’ own ideas to scientifically accepted views. To do this, you must know what your students’ starting points are so that you can provide experiences that support the development of correct conceptual understanding.

The science assessment probes in this book are field-tested formative assessments that are based on core concepts and ideas in science, many of which cut across multiple grade spans at increasing levels of sophistication. The probes are designed to help you identify students’ ideas at various stages during their K–12 experiences. For example, elementary students may have basic notions about atoms, molecules, or “tiny bits,” but it is not until later in middle school that students are expected to use the idea of atoms and molecules to explain phenomena. Knowing the ideas students have at different grade levels can give you a clear picture of conceptual change over time.

These probes are intended to be used before and during instruction. Finding out students’ ideas, examining them carefully, and using the information obtained from the probes are integral aspects of formative assessment. It is this latter aspect of using the assessment data that is most overlooked in classroom assessment. It is not sufficient to know the misconceptions your students may have. Information from the assessment probes will have little impact unless you make changes in curriculum and instruction based on where students are in their thinking.

Assessment Probe Design and Features

The formative assessment probes included in this book are designed to address several of the student learning difficulties identified in the research literature. In areas where there is little or no research, they have been designed to address problematic areas identified by teachers. Each probe consists of two parts to be completed by the student: a selected response and a justification for selecting the response.

The first part is introduced by an engaging prompt about a familiar phenomenon or objects. The prompt is followed by a question that asks students to select from a set of likely student-held responses. These responses include research-identified ideas, including misconceptions, or common ideas that emerged through the probe field testing. Students’ selected responses provide a quick snapshot for you to see what individual students think about an idea. This data can be quickly tallied to get a picture of where your class stands as far as the variety of ideas students have.

The second part of each probe asks students to describe their thinking or provide an explanation or “rule” they used to select their answer. Rule is a general term used with younger students (though not limited to younger students) that usually involves a set of basic criteria students use to categorize or make sense of an object or phenomena. For example, in deciding whether certain materials are considered matter or not matter, a student might explain how she used the rule that “it had to be something she could feel and see” to sort objects and materials.

Asking students to describe a rule often leads to uncovering intuitive rules, such as
“more A, more B” (Stavy and Tirosh 2000). This rule simply means if you have more of something (such as mass or volume), then other characteristics increase (such as density and boiling point). This rule may be applied in a variety of physical, Earth, and biological contexts and seems to be a core conception that contributes to several common misconceptions. Older students may provide more sophisticated scientific explanations that link a claim with evidence and reasoning strategies to support their answers. In both types of justification, involving either rules or explanations, students provide a rationale for their ideas, giving teachers a detailed glimpse into their thinking.

To develop the probes we used a process and formats described in Science Curriculum Topic Study: Bridging the Gap Between Standards and Practice (Keeley 2005). The process begins with identifying the concepts and related ideas in a topic, based on a study of the national standards and research. The concepts and ideas in the standards are then linked to the concepts and ideas addressed in the cognitive research literature and to their associated learning difficulties and misconceptions.

The national standards used to identify the concepts and specific ideas were from Benchmarks for Science Literacy (AAAS 1993) and National Science Education Standards (NRC 1996). The sources of research summaries were Benchmarks for Science Literacy (Chapter 15, “The Research Base”) and Making Sense of Secondary Science: Research into Children’s Ideas (Driver et al. 1994). (Note: The latter resource does not address only high school science. Secondary science is a term used in the United Kingdom to describe grade levels beyond early primary grades. The book addresses ideas from grade 1 through adulthood and includes preK–2 ideas in several examples.) Figure 2 shows an example of how the process was used to “unpack” the topic “conservation of matter” in order to match the concepts and ideas in that topic to the research findings. This information was then used to develop a set of assessment probes that target standards and research-based ideas related to conservation of matter.

In Figure 2, the shaded areas designate the specific Benchmarks idea and the related research finding that were used to develop the probe “Ice Cubes in a Bag” (p. 49). Even though the idea in the national standards is a K–2 idea, the probe can be used with higher grade levels to determine if students use the more sophisticated ideas of closed systems or numbers of atoms. Other matches between the research ideas and the standards led to the development of three additional probes in the conservation of matter set (“Lemonade,” “Cookie Crumbles,” and “Seedlings in a Jar”).

The probes are designed to provide you with quick and targeted feedback on students’ ideas and learning. The data from the first part of the probe are easy to collect and organize. Individuals or teams of teachers can quantify the data by making charts or graphs that show student results that can be shared with colleagues across grade levels. As you read the students’ explanations, you will notice similar
Introduction

Figure 2 Mapping Grades 3–8 Conservation of Matter Related Concepts and Ideas to Research Findings for Probe Development

<table>
<thead>
<tr>
<th>Science Concepts and Ideas</th>
<th>Research Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td>Matter and Its Properties</td>
</tr>
<tr>
<td>• Objects have many observable properties, including size, weight, and shape. Those properties can be measured using tools such as rulers and balances. (NSES K–4, p. 127)</td>
<td>• Students need to have a concept of matter in order to understand conservation of matter. (BSL, p. 336)</td>
</tr>
<tr>
<td>• Materials can exist in different states—solid, liquid, and gas. (NSES K–4, p. 127)</td>
<td>• Students need to accept weight as an intrinsic property of matter to use weight conservation reasoning. (BSL, p. 336)</td>
</tr>
<tr>
<td>• Air is a substance that surrounds us, takes up space, and whose movements we feel as wind. (BSL 3–5, p. 68)</td>
<td>• Confusion between weight and density contributes to difficulty understanding conservation of matter. (BSL, p. 336)</td>
</tr>
<tr>
<td>Physical and Chemical Change</td>
<td>The concept of mass develops slowly. Mass is often associated with the phonetically similar word massive and thus may be equated with an increase in size or volume. (Driver et al., p. 78)</td>
</tr>
<tr>
<td>• Water can be a liquid or solid and can go back and forth from one form to another. If water is turned into ice and then ice is allowed to melt, the amount of water is the same as it was before freezing. (BSL K–2, p. 67)</td>
<td>• The idea that gases possess material character is difficult. Students may not regard gases as having weight or mass. Until they accept gas as a substance, they are unlikely to conserve mass in changes that involve gases. (Driver et al., p. 80)</td>
</tr>
<tr>
<td>• No matter how parts of an object are assembled, the weight of the whole object made is always the same as the sum of the parts; and when a thing is broken into parts, the parts have the same total weight as the original thing. (BSL 3–5, p. 77)</td>
<td>Physical and Chemical Change</td>
</tr>
<tr>
<td>• Substances react chemically in characteristic ways with other substances to form new substances with different characteristic properties. In chemical reactions, the total mass is conserved. (NSES 5–8, p. 154)</td>
<td>• There is often a discrepancy between weight and matter conservation with dissolving. Some students accept the idea that the substance is still there but the weight is negligible, is “up in the water,” or it no longer weighs anything. (Driver et al., p. 84)</td>
</tr>
<tr>
<td>Interactions in a Closed System</td>
<td>• Some students believe one state of matter of the same substance has more or less weight than a different state. (Driver et al., p. 80)</td>
</tr>
<tr>
<td>• No matter how substances within a closed system interact with one another, or how they combine or break apart, the total mass of the system remains the same. (BSL 6–8, p. 79)</td>
<td>• In changes that involve a gas, students are more apt to understand matter is conserved if the gas is visible (BSL, p. 337)</td>
</tr>
<tr>
<td>Particulate Matter</td>
<td>Weight conservation during chemical reactions is more difficult for students to understand, particularly if a gas is involved. (BSL, p. 337)</td>
</tr>
<tr>
<td>• The idea of atoms explains the conservation of matter: If the number of atoms stays the same no matter how they are rearranged, then their total mass stays the same. (BSL 6–8, p. 79)</td>
<td>• Many students do not view chemical changes as interactions. They have difficulty understanding the idea that substances can form from a recombination of the original atoms. (BSL, p. 337)</td>
</tr>
<tr>
<td>• Newly constructed ideas of atoms may undermine conservation reasoning. For example, if a material is seen as being dispersed in very small particles, then it may be regarded as having negligible weight or being more spread out and less heavy. (Driver et al., p. 77)</td>
<td>Particle Ideas</td>
</tr>
</tbody>
</table>

^ The shaded items are the specific Benchmark idea and the related research finding that were used to develop the probe “Ice Cubes in a Bag.”
ideas held by a number of students as well as idiosyncratic ones held by individual students. Overall, the quick and easy snapshot you can glean from the probe results can inform adjustments to curriculum and instruction in order to improve student learning. Sometimes these adjustments can be made in your classroom. Other times the results can provide valuable information to teachers who have had some of the same students before you or will have them after you.

Formative Assessment Probes in This Book

The probes in this book are “enhanced selected-response” items. In other words, students must choose from a predetermined list of responses that may match their thinking and then justify their reasons for choosing that response. The probes begin with the selected-choice option. The distracters are particularly useful in determining if your own students’ “misconceptions” match those found in the research. The two types of selected-response items are (1) multiple-choice questions with one best answer (Note: We don’t use the term correct answer as it often depends on students’ interpretation and reasoning), such as in the probe “Ice Cubes in a Bag” (p. 49), and (2) justified lists, such as used in “Is It Matter?” (p. 79). The multiple-choice questions include a stem that provides students with a familiar phenomenon or object to explain an idea, contrasts opposing views, or provides a situation where students commit to a prediction. Justified lists begin with a statement about objects, materials, or phenomena, followed by multiple examples students select from that match their ideas related to the statement. Justified lists are particularly helpful in determining if students can transfer their learning from one context to another and what rules or explanations they use to base their selected choices on. For example, in “Making Sound” (p. 43), if students learned about sound and vibration in the context of making musical instruments, they may select mostly items on the list that are similar to musical instruments rather than generalizing their knowledge across contexts.

The probes are also designed not to cue students too much, so that you can gain the most information from their original thinking. For example, in “Making Sound,” the task refers to objects that make sound but does not mention the air or other material contacting or surrounding the objects that also vibrates. Evidence of recognizing and using this knowledge in their explanation or rule may not be evident if the students were cued to this idea. A major challenge in developing these probes was to provide just enough detail and appropriate language without putting ideas into students’ heads or perpetuating their misconceptions.

The probes in this book are paper-and-pencil tasks. However, they also lend themselves to oral questioning prompts for small- or large-group discussion, card sorts, and individual interviews. Alternative ways to administer the probes to students are explained in the teacher notes accompanying each probe. Probes can easily be adapted to include language and examples that may be more appropriate at a given
Introduction

grade level. You are encouraged to modify the probes to best fit your students.

Using the Probes

“Students bring conceptions of everyday phenomena to the classroom that are quite sensible, but scientifically limited or incorrect” (Donovan and Bransford 2005, p. 399). Many of these preconceptions are based on students’ everyday experiences outside the classroom, things they hear or see in the media, and ideas that go unchallenged in school settings. Teachers need to engage students in sharing these ideas if students are to understand science. One way to begin this engagement is to provide a probe and ask students to write down their ideas in response to the prompt. Writing a response to the prompt is one method of making students’ thinking visible and engaging them in the ideas they will be learning about. At the same time it encourages your students to pay careful attention to the reasoning they use to support their ideas.

The probes can also be used orally to engage small or large groups of students in discussion. Using a probe to elicit individual ideas and then asking students to share and discuss their ideas with others provides you with valuable assessment information and at the same time enhances student learning. The process of making students’ thinking explicit through discourse serves a dual purpose. First, it allows teachers to see what types of ideas students have so they can provide interventions that address misconceptions or provide for further learning opportunities. Second, encouraging students to make their ideas explicit to others actually promotes learning for both the thinker and those with whom he or she shares the ideas (Black et al. 2003).

Questioning is a key component of science teaching and formative assessment. “In many science classrooms, questioning typically involves a three-turn exchange in which the teacher asks a question, a student answers, and the teacher evaluates the answer” (Minstrell and van Zee 2003, p. 61). In too many other science classrooms, teachers try to get students to accept “the right answer” rather than engaging them in a conversation that elicits their ideas and uses those ideas as the starting point for activities, investigations, demonstrations, and readings. You can avoid the “right answer” approach by using the probes to uncover your students’ conceptions at any time during an instructional sequence and holding back on giving students an answer so they can discover it for themselves.

Probes also “turn the spotlight from examining students’ work to examining teachers’ work” (Sneider 2003, p. 39). In other words, they help you understand student thinking so that you can develop more effective ways of teaching. While it is clearly important for you to understand the concepts and skills you teach, “without a way of stepping inside our students’ shoes it is impossible for us to communicate those concepts and skills in a deep and meaningful way” (Sneider 2003, p. 39).

The use of assessment probes and their results as a means for determining how to alter curriculum and instruction can be stimulating both personally and professionally. Jim Minstrell,
teacher and researcher well known for his development and use of diagnostic assessment, sums up these rewards in the following quote:

When in the classroom I now wear two hats, one as a teacher and another as a researcher studying my students’ thinking and how to effect better learning. I can no longer teach without learning about my students’ thinking. The more I learn about my students’ thinking, the more I can tune my instruction to help students bridge from their initial ideas to more formal, scientific thinking. Rather than merely serving students the activities from the book, we are first using questions to diagnose their thinking. Then, we choose activities to address their thinking. Thinking in this way about our work in the interest of improving our practice is part of what it means to be professional. Teaching never becomes boring—quite the contrary. As teachers, we can expect to be lifelong learners about our profession. (Minstrell and van Zee 2003, p. 72)

The best way to learn how to use a probe is to test one out by giving it to your students and then deciding what to do with the information you have gathered. Try one with your colleagues, too, and together discuss the implications for teaching and learning. Modify the ways you use the probes. In other words, do not always administer the probe as an individual written task. Use the probes during small-group and whole-class discussions and listen carefully to students as they share their ideas. You can use a probe to interview an individual student or have informal conversations with students during nonstructured times. Feel free to adapt the probes as needed. Some language is problematic for certain students or grade levels. Modify the probe so that it best fits your individual circumstances but, at the same time, do not change it so much that it no longer probes what it was intended for.

Use the teacher notes provided with each probe to consider implications for curriculum and instruction. The format and suggested ideas in the teacher notes provide a framework for summarizing, evaluating, and using the student learning data you collect. Above all, remember that for the probes to be formative you must do something with the data you collect.

Teacher Notes That Accompany the Probes

Each of the probes in this book contains detailed teacher notes to help you to (a) decide how, when, and with whom to use the assessment probe; (b) link the ideas addressed by the probe to related standards; (c) examine research that informed the development of the probe and that provides additional insight into students’ thinking; (d) consider new instructional strategies; and (e) access additional information to learn more about the topic addressed by the probe. We describe the components of the teacher notes below.

Purpose

“Deciding what to assess is not as simple as it might appear. Existing guidelines for assessment design emphasize that the process should begin with a statement of the purpose for the assessment and a definition of the con-

Introduction
Introduction

tent domain to be measured” (Pelligrino, Chudowsky, and Glaser 2001, p. 178). This section describes the concept or general topic for the specific idea the probe is intended to elicit and it describes that idea. It is important that you be clear about what the probe is going to reveal so that you can decide if the probe fits your intended target.

Related Concepts
A concept is a one-, two-, or three-word mental construct used to organize ideas in a topic (Keeley 2005). Each probe is designed to target one or more related concepts that cut across grade spans. Conversely, multiple probes may address a single concept. You may find it useful to use a cluster of probes to target a concept or specific ideas within a concept. For example, there are four probes that target the concept of conservation of matter. The concept matrices on pages 24 and 116 can help you identify related probes.

Explanation
A brief scientific explanation accompanies each probe to provide clarification of the scientific content that underlies the probe. The explanations are designed to help you identify what the most scientifically acceptable answers are (sometimes there is not a “right” answer) as well as to clarify any misunderstandings you might have about the content. The explanations are not intended to provide detailed background knowledge on the concept, but enough to connect the idea in the probe with the scientific knowledge it is primarily based on. If you have a need for further explanation of the content, the teacher notes list National Science Teachers Association (NSTA) resources, such as the Stop Faking It! Finally Understanding Science So You Can Teach It series, that will enhance and extend your understanding of the content.

Curricular and Instructional Considerations
The probes in this book are not limited to one grade level in the way that summative assessments are. Instead, they provide insights into the knowledge and thinking that students in your school may have as they progress from one grade level to the next. Ideas are included that students may not encounter until later in their education (e.g., high school), but teachers in the later grades will come to understand where and how ideas originate. Some of the probes can be used in grades K–12; others may cross over just a few grade levels. Teachers in two different grade spans (e.g., middle and high school) might decide to use the same probe and come together and discuss their findings.

The curricular and instructional considerations also describe how the information gleaned from the probe is useful at a given grade span. For example, the information might be useful for planning instruction when an idea in the probe is a grade-level expectation or it might be useful at a later grade to find out whether students have sufficient prior knowledge to move on to the next level of sophistication. Sometimes the knowledge gained through use of the
probe indicates that you might have to back up several grade levels to teach ideas that have not been fully understood in previous grades.

We deliberately chose not to suggest a grade level for each probe. If the probes had been intended to be used for summative purposes, a grade level, aligned with a standard, would have been suggested. However, the probes have a different purpose. Do you want to know about the ideas your students are expected to learn according to your grade-level standards? Are you interested in how preconceived ideas develop and change across multiple grade levels in your school even when they are not yet formally taught? Are you interested in whether students achieved a scientific understanding of previous grade-level ideas before you introduce higher-level concepts? The descriptions of grade-level considerations in this section can be coupled with the section that lists related ideas in the national standards in order to make the best judgment about grade-level use.

Administering the Probe

Suggestions are provided for administering the probe to students, including a variety of modifications that may make the probe more useful at certain grade spans. For example, the notes might recommend eliminating certain examples from a list for younger students who may not be familiar with particular words or examples, or using the word *weight* instead of *mass* with elementary students. This section may also include suggestions for demonstrating the probe context with artifacts or ways to elicit the probe responses while students interact within a group.

Related Ideas in National Science Education Standards (NRC 1996) and Benchmarks for Science Literacy (AAAS 1993)

This section lists the learning goals stated in the two national documents generally considered the “national standards”: *National Science Education Standards* (NRC 1996) and *Benchmarks for Science Literacy* (AAAS 1993). Since the probes are not designed as summative assessments, the learning goals listed are not intended to be considered as alignments to the probe, but rather as related ideas. Some targeted ideas, such as a student’s conception of matter in “Is It Matter?” (p. 79), are not explicitly stated as learning goals in the standards but are clearly related to national standards concepts such as properties of matter, states of matter, and conservation of matter. When the ideas elicited by a probe appear to be a strong match with a national standard’s learning goal, these matches are indicated by a star ★ symbol. You may find this information useful in using probes with lessons and instructional materials that are aligned to national standards and used at a specific grade level.

Related Research

Each probe is informed by related research where available. Since the probes were not designed primarily for research purposes, an exhaustive literature search was not conducted as part of the development process. The authors
Introduction

drew on two comprehensive research summaries commonly available to educators: Chapter 15, “The Research Base,” in *Benchmarks for Science Literacy* (AAAS 1993) and Rosalind Driver et al.’s *Making Sense of Secondary Science: Research Into Children’s Ideas* (1994). Although both of these resources describe studies that have been conducted in past decades, and studied children not only in the United States but in other countries as well, many of the studies’ results are considered timeless and universal. (At the same time, however, it is important to recognize that cultural and societal contexts can also influence students’ thinking.)

As you use the probes, you are encouraged to seek new and additional research findings. One source of updated research can be found on the Curriculum Topic Study (CTS) website at www.curriculumtopicstudy.org. A searchable database on this site links each of the CTS topics to additional research articles and resources.

Suggestions for Instruction and Assessment

After analyzing your students’ responses, it is up to you to decide on the student interventions and instructional planning that would work best in your particular curricular and instructional context. We have included suggestions gathered from the wisdom of teachers, from the knowledge base on effective science teaching, and from our own collective experience as former teachers and specialists involved in science education. These are not exhaustive or prescribed lists but rather a listing of possible suggestions that may help you modify your curriculum or instruction, based on the results of your probe, in order to help students learn ideas that they may be struggling with. It may be as simple as realizing that you need to provide a variety of contexts or that there may be a specific strategy or activity you could use with your students. Learning is a very complex process, and it is unlikely that any single suggestion will help all students learn the science ideas. But that is part of what formative assessment encourages—thinking carefully about a variety of instructional strategies and experiences. As you become more familiar with the ideas your students have and the multifaceted factors that may have contributed to their misunderstandings, you will identify additional strategies that you can use to teach for conceptual change.

Related NSTA Science Store Publications and NSTA Journal Articles

The National Science Teachers Association’s (NSTA) journals and books are increasingly targeting the ideas that students bring to their learning. For example, Bill Robertson’s *Stop Faking It!* series of books may be helpful in clarifying content for students (as well as for teachers!). A journal article from one of NSTA’s elementary, middle school, or high school journals may provide additional insight into students’ misconceptions or provide an example of an effective instructional strategy or activity that can be used to develop understanding of the ideas targeted by a probe. To access the Science Store and journal articles, go to www.nsta.org and click on the appropriate site.
Related Curriculum Topic Study Guides
NSTA is a co-publisher of the book *Science Curriculum Topic Study: Bridging the Gap Between Standards and Practice* (Keeley 2005). This book was developed as a professional development resource for teachers with funding from the National Science Foundation’s Teacher Professional Continuum Program. It provides a set of 147 Curriculum Topic Study (CTS) guides that can be used to learn more about a science topic’s content, examine instructional implications, identify specific learning goals and scientific ideas, examine the research on student learning, consider connections to other topics, examine the coherency of ideas that build over time, and link understandings to state and district standards. The CTS guides use national standards and research in a systematic process that deepens teachers’ understanding of the topics they teach.

The probes in this book were developed using the CTS guides and the assessment tools and processes described in Chapter 4 of the CTS book. The CTS guides that were used to inform the development of each of the probes are listed in the teacher notes that follow each probe and can be used by teachers to extend those notes.

References
References are provided for the standards and research findings cited in the teacher notes.

Vignettes
The following three vignettes illustrate how a probe can be used in a variety of ways by teachers in elementary, middle, and high school. They show how teachers used the probes to elicit students’ ideas before, during, and even after instruction for the purpose of informing their immediate teaching plans, adjusting instruction the next time they teach a unit, making curricular changes, or sharing their learning about students’ ideas with their colleagues. The teachers in the vignettes are composites of teachers with whom the authors have worked.

Elementary Vignette: Using the Probe “Is It an Animal?”
Before we began teaching our forest unit this year, the other third-grade teacher in my building and I decided to work on updating and revising the unit together. Both of us had taught this unit for several years and had gathered an enormous number of resources and teaching activities on the topic of “forests.” Our elementary curriculum has a theme each year that draws on ideas from the state science standards about the diversity of life, ecology, structure and function, and how living things change over time. In first grade, students use butterflies as the context in which to learn ideas. In second grade, dinosaurs are the theme. Fourth graders use the theme of oceans to develop life science ideas.

We started by identifying goals for our students. We focused our first meeting on the goal of developing an understanding of
what distinguished animals from other organisms. This goal includes three performance indicators from our state (Maine Department of Education 1997):

- Design and describe a classification system for organisms.
- Describe the different living things within a given habitat.
- Compare and contrast the life cycles, behavior, and structure of different organisms.

Because we wanted to determine our students’ level of knowledge and the kinds of prior experiences they would bring to the unit, we introduced the unit using the K-W-L strategy. This formative assessment strategy included asking what students knew about the topic, what they wanted to learn, and then, at the end of the unit, describing what they learned. Through this exercise we learned that students could name and describe a number of forest animals, but would certainly benefit from the activities we had designed in the upcoming weeks. We kept notes on our lessons as we worked through the unit and got together regularly to discuss the progress students were making. We found students sorted organisms in a variety of ways, including grouping organisms into plant and animal categories and forest and nonforest categories and by body coverings and motility strategies.

As a culminating activity, each student selected a forest animal to write a report on using information text and created a three-dimensional papier-mâché model of his or her chosen animal to put in the classroom “forest.” Through these engaging experiences, our students learned a great deal about the forest and about the characteristics of the animals that live there. We had student “experts” on a variety of animals, including bears, deer, squirrels, owls, chipmunks, skunks, bobcats, wolves, raccoons, and even a lynx!

Later that year, my colleague and I attended a formative assessment conference where we learned about science assessment probes. We were encouraged to select a probe that we could try in our own classrooms. We were excited to discover the “Is It an Animal?” probe (Figure 3) because it fit so nicely with our forest unit. We took the probe back to school and immediately administered it to our third-grade students. Even though we had already taught the unit, we wanted to see if our instruction had made an impact on students’ ability to retain the ideas they learned. Because some students in our class are English as a second language learners, we asked students to complete the first part of the probe independently after giving the directions and examples verbally and using pictures along with the examples. We then used an interview protocol for the second part, designed to capture students’ thinking about why the pictures they circled were animals. We engaged the entire class in a discussion of the choices they made about animals and the reasons for their choices.

As we looked through the student papers and recalled the students’ list of “rules” that emerged from the class discussion, we noted similarities in student thinking. The major-
ity of students identified the cow, tiger, frog, snake, and monkey as animals. A little less than a quarter of the students identified the beetle, shark, snail, chicken, worm, and spider as animals, and an even fewer number of students recognized the boy or starfish as an animal. As a matter of fact, out of the 84 students we gave the probe to, only 9 identified the boy as an animal and 12 identified the worm! Even more revealing were the rules students gave in deciding whether or not something was an animal. These included the following:

- Animals have tails.
- Animals have fur and bones.
- Animals cannot walk on two feet.
- Animals have four or more legs.
- Animals can move by themselves.

Clearly our students had a limited view of animals. We reflected on what we could do differently in the future to better address and more fully develop the concept of “animal” with our third-grade students. We realized how helpful it would have been to have known the concepts our students held of animals before we developed the forest unit. We now know it is important to make certain that as students group organisms as animals they carefully examine the characteristics to see if they are truly exclusive. Which features do all animals have in common? Which features are different? Which characteristics of organisms are important to consider? Animals are more than warm, furry, four-legged creatures! Because so many students seemed
to have a very narrow definition of animal, we need to diversify the organisms students come in contact with in our unit. We also realize we should give students real inquiry opportunities to observe and investigate real animals—not the papier-mâché variety.

Perhaps the most powerful learning from the experience of using a probe was the incredible depth of insight it provided to us as teachers. Using a probe that had been carefully designed to pull out some of the finer points and trouble spots based on cognitive research allowed us to “see” what was in the heads of our third graders, enabling us, in the future, to meet students where they were. The teacher notes that accompanied the assessment probe clearly indicated that we had overemphasized vertebrates, particularly mammals. We learned that the research shows that people have a limited understanding of the term animal.

Our intention in using the K-W-L strategy was to get information about the present thinking and understanding of third graders with respect to forests and animals. While this method did inform us of how students initially viewed the forest, it did not tell us all we needed to know about what students considered to be an animal. The forest was just a context for learning. A conception of “animal” was one of the ideas. We decided to have our students revisit their forest unit projects in the spring when we could go outside and visit a local woodland. We would design the experience to build on their prior learning, challenge their current ideas about what an animal is, and expand their classification of animals to include a variety of other animals found in the forest, such as salamanders, millipedes, worms, birds, beetles, moths, toads, spiders, snakes, and even people.

The notion of using formative assessment probes to regularly “check in” on students’ ideas has spurred us to use additional probes to gather information that will help us provide a more flexible and suitable pathway for students’ learning. From now on our unit planning will always be informed by results from probes. In addition, we have shared our student data with the grade 4 teachers. As a result of seeing what our students struggled with, next year they are going to use a modified version of the same probe using ocean animals as part of their ocean unit, to see if the same students revert back to their preconceived ideas. As a result of what we found out, we will all be sure to develop the idea of what an animal is, using a variety of contexts and examples.

Middle School Vignette: Using the Probe “Wet Jeans”

In sixth grade we study the water cycle. Our unit builds on experiences students had in elementary grades learning about change in state and developing an academic vocabulary to describe water when it changes state. When students come to sixth grade, they still remember the water cycle song they learned in third grade and don’t hesitate to use words like evaporation and condensation.

This year I decided to use the “Wet Jeans” probe (Figure 4) before planning instruction that would include a review of concepts like evaporation and condensation. These seemed
like fairly simple concepts that most of my students would probably remember and understand. Nevertheless, it would be helpful to find out if there were any students who still didn’t understand evaporation so that I could design special instruction for them before moving on to the next set of ideas.

Wow! I wasn’t prepared for the results! Instead of just a few students not understanding where water goes after it evaporates, most of the students in my class had major misconceptions! Even though they could comfortably use the word *evaporation*, over 75% of my students thought the water went immediately up to the Sun or the clouds. A few thought it no longer existed.

As I read through the teacher notes that came with the probe and examined my students’ responses, it was clear to me that they used the word *evaporation* without understanding. Furthermore, it seems that they missed the grades 3–5 idea described in the related standards from *Benchmarks* that states, “When liquid water disappears, it turns into a gas (vapor) in the air and can reappear as a liquid when cooled, or as a solid if cooled below the freezing point of water. Clouds and fog are made of tiny droplets of water” (AAAS 1993, p. 68). The research notes said students could understand this by fifth grade if they had received targeted instruction.

When I checked with the grades 3–5 teachers, they agreed that the idea of water existing in the air as water vapor was never explicitly

Figure 4 Wet Jeans

Sam washed his favorite pair of jeans. He hung the wet jeans on a clothesline outside. An hour later the jeans were dry.

Circle the answer that best describes what happened to the water that was in the wet jeans an hour later.

A. It soaked into the ground.
B. It disappeared and no longer exists.
C. It is in the air in an invisible form.
D. It moved up to the clouds.
E. It chemically changed into a new substance.
F. It went up to the Sun.
G. It broke down into atoms of hydrogen and oxygen.

Describe your thinking. Provide an explanation for your answer.

addressed. Students did know the water disappeared, but they didn’t know where it actually went or what form it was in. This indicated to me that I needed to provide an opportunity for students to understand that the water is in the air around us. Then I could move on to the more complex idea of the global water cycle.

I decided to present my students with several everyday phenomena such as water droplets on the outside of a cold beverage glass, moisture on the bathroom window, and dew on the morning grass. I asked them to explain how the water got there, and they all answered “condensation and evaporation.” However, when I pressed them to explain to me how the water actually got there, they had all sorts of interesting explanations. Only a few mentioned the water was in the air that came in contact with the object in question. I challenged students to think of a way they could prove where the water came from, and this led to a variety of interesting investigations. Eventually most students began to accept the idea that the water was in the air in a form they could not see. I also found this was an opportune time to tie the idea to conservation of matter so that students would understand that the water did not disappear in the sense that it no longer existed but rather it was just in a different form and different place.

Once my students could understand the meaning behind the terms *evaporation* and *condensation*, I would use these terms to discuss the processes that contribute to the water cycle. The teacher notes that came with the probe pointed out the flaws in water cycle diagrams. To see if my students continued to accept the idea that water goes into the air initially before some of it travels upward to form clouds, I showed them a picture of the water cycle with an upward arrow pointing from a lake to a cloud. I asked them if that was a correct representation of evaporation. Most of my students pointed out that the diagram makes it look like water goes immediately up to a cloud, rather than existing in the surrounding air. I thought it was a good idea to have students discover this potential misrepresentation for themselves, as this is often the way the water cycle is illustrated in their textbooks.

I don’t think I would have realized my students had this idea if I hadn’t used the probe and combined my students’ results with the readings that were in the probe teacher notes. It is quite possible that we would have covered the water cycle and my students would still believe that the water goes immediately up to the Sun or clouds. They would have passed a standardized assessment item asking them to label the process indicated by the upward arrow on a water cycle illustration and they would know the term, answer the test item correctly, yet still have misconceptions. Knowing the ideas they had about evaporation beforehand gave me an opportunity to design instruction to challenge their ideas and help my students develop a correct conception of where water goes after it evaporates and the form it takes.

High School Vignette: Using the Probe “Is It Matter?”

This year, I have worked very hard to shift the focus of my chemistry strand in my ninth-
grade, heterogeneously grouped integrated science class. One of my goals was to teach the concept of conservation of matter during chemical and physical changes. Understanding this concept will help students when they encounter stoichiometry as juniors in chemistry.

To start off my unit, I asked students to think about what might happen to the mass of solid or liquid matter as it underwent some sort of interaction (a physical or chemical change). After my students suggested a number of scenarios using solids and liquids, they developed and carried out a variety of investigations to test their ideas. Teams of students investigated materials that changed state, changed shape, dissolved, broke into separate pieces, or changed chemically. In general, students could accurately explain what happened to the mass in the experiments they carried out. Students developed a “rule” to explain their observations: “No matter what you do to the material, if nothing new is added or taken away, the mass will stay the same.” This rule led to a formal definition of the conservation of matter.

After students had explored conservation of matter ideas in various contexts using solids and liquids, I decided to assess whether they would apply their present understandings to gases as well. I presented students with another scenario. I put an Alka-Seltzer tablet, flask of water, and an empty balloon on a scale. I asked students to predict what would happen to the total mass when the Alka-Seltzer tablet was placed in the flask of water and covered with a balloon. In the scenario it was explicitly stated that nothing could get in or out of the system. Surprisingly, when asked if matter would be con-
served, a number of students said no because there was a gas in the balloon and gases don't weigh anything. Other students stated that the mass was not conserved because the tablet had dissolved into a powder that was weightless. I wondered where these ideas came from. Could my students be lacking a scientific conception of matter?

I decided to use a formative assessment probe to find out what my students’ conception of matter was. I specifically wanted to find out what things they thought were matter and what things were not and what their “rule” was for defining matter. I gave them the probe in Figure 5.

I was quite surprised when I looked through the student work. Several students identified gravity, light, magnetic force, fire, and heat as matter while not marking air, cells, stars, dust, and dissolved sugar as matter. A number of students did not mark atoms as matter! What was going on here? Students listed several interesting reasons as their basis for classifying materials as matter or not matter, including that it has to be felt, it needs to be visible, it has to have weight, and the definition “matter is anything that has mass and occupies space.” Yet they failed to recognize several forms of matter, such as air having mass, or they mistakenly identified forms of energy as having mass and volume. What was getting in the way of my students’ understanding? Several students recalled a definition of matter but had difficulty applying it. If they didn’t have a correct conception of matter, how could they apply conservation of matter ideas?

After reviewing the student work from the probe “Is It Matter?,” I decided to investigate student thinking even further by observing students as they talked about their ideas with each other. The teacher notes that came with the probe described a method of card sorting that could give me additional information. I presented small groups of students with the items from the task on cards and asked them to sort them into two piles—a “matter” pile and “not matter” pile. This method allowed me to watch the faces of students as they worked through the exercise and discussed their ideas with their peers. Students hesitated when they were unclear or struggling with an example such as air, dissolved sugar, or sunlight. Occasionally, students would move cards as they reconsidered earlier choices, indicating uncertainty on their part.

Periodically, I asked students to explain why they had placed an item in a particular category and asked for elaboration when I wanted to explore a particular student’s idea further. These observations and additional probing provided further evidence that my students were lacking a correct conception of matter. Furthermore, the research summaries described in the teacher notes confirmed what I was hearing from my students—in particular, the idea that gases do not have material character and thus are not considered matter.

I examined the suggestions for instruction and assessment provided in the teacher notes. I began to consider the contexts in which students had explored matter thus far and how these experiences might have influenced the pat-
terns that were emerging in this set of student work. Had most of their experiences been with matter that they could see? How much experience had they had with gases? What kinds of experiences had they had in earlier grades with weighing and finding volumes? Were some of the items on the list more difficult for them to think about? Did they know what mass and volume mean? In which grade had they developed an operational definition of matter? It seemed as if the definition they were using was memorized without any understanding.

Despite the fact that I had revised my unit to more deliberately target conservation of matter ideas in a variety of contexts, I had missed a critical piece in my planning. Even though my students could express conservation of matter ideas and conserve matter in a number of situations, they would not be able to fully comprehend the idea of conservation of matter without a clear understanding of what matter is. I had been using the term matter throughout the unit assuming that students had this prerequisite knowledge. The word matter is everywhere! In prior grades we refer to “properties of matter,” “changes in matter,” and “states of matter,” but we fail to first help students develop a conception of what constitutes matter. Even though we were investigating forms of matter and conserving matter, I found it was worth taking the time to make sure that my students have a conception of what matter is. I will change my activities to explicitly address and challenge my students’ conception of matter, particularly regarding gases and dissolved substances.

Concept Matrices and Probe Set

The remainder of this book contains a set of 25 probes that you can use with your students along with accompanying teacher notes for each probe. The concept matrices (p. 24 and 116) indicate the concepts most related to each probe and can be used to select probes that match your instructional context. In this volume we focus on the following topics: forms of matter; changes in matter; light, heat, and sound energy; living things and life processes; cells; weathering and erosion; phases of the moon; and gravity. Later volumes will include additional topics in life, Earth, space, and physical science.

References

Introduction

Can It Reflect Light?

What types of objects or materials can reflect light? Put an X next to the things you think can reflect light.

___ water
___ gray rock
___ leaf
___ mirror
___ glass
___ sand
___ potato skin
___ wax paper
___ tomato soup
___ crumpled paper
___ shiny metal
___ dull metal
___ red apple
___ rough cardboard
___ the Moon
___ rusty nail
___ clouds
___ soil
___ wood
___ milk
___ bedsheets
___ brand new penny
___ old tarnished penny
___ smooth sheet of aluminum foil

Explain your thinking. Describe the “rule” or the reasoning you used to decide if something can reflect light.

__
__
__
__
__
__
__
__
__

U n c o v e r i n g S t u d e n t I d e a s i n S c i e n c e
Can It Reflect Light?

Purpose
The purpose of this assessment probe is to elicit students’ ideas about light reflection off ordinary objects and materials. The probe is designed to find out if students recognize that all non-light-emitting objects that we can see reflect some light or if they believe that only certain types of objects reflect light.

Related Concepts
light, reflection

Explanation
Assuming all of the objects on the list are visible to an observer, the best response is “All of the objects on the list can reflect light.” The objects and materials on this list can be seen when light is reflected from the object or material and enters the eye. When we can see a nonluminous object, we know that some or all of the light striking the object is reflected to our eye. Otherwise we would not be able to see it. Most materials will absorb some wavelengths of light and reflect the rest. This accounts for why we see different colors. When we see white, all colors have been reflected back. Materials that absorb all light and reflect no light appear black. Black is the absence of light. Black objects whose features you can actually see do not absorb all the light that falls on them. With these objects, some reflection at the surface allows you to see their features. Some materials clearly reflect light better than others. Ordinary mirrors and light, shiny, smooth objects reflect light to the observer because the light bounces off the surface at a definite angle. When light hits rough surfaces, such as paper or rock, it is scattered and bounc-
es back in many different directions. This scattering makes some objects appear dull.

Curricular and Instructional Considerations

Elementary Students
Knowing that light can be reflected, refracted, or absorbed when it comes in contact with an object or material is a grade-level expectation in the national standards. Students at this age engage in learning opportunities that involve examining the properties of a variety of objects and materials. The probe is useful at this grade level for examining how students connect their ideas about certain observable properties of objects and materials to ideas about reflection of light. It is important for students to develop the generalization that all visible objects reflect some amount of light, an important prerequisite to understanding how vision works (a topic that is traditionally studied in middle school).

Middle School Students
Students develop an understanding that nonluminous objects are seen as a result of light being reflected off the object and entering the eye. This idea is a grade-level expectation in the national standards. However, they often fail to recognize the closely linked idea that if you can see something, then it must be reflecting light. This notion explains why each of the visible objects on the list reflect some light. Middle school students typically engage in learning activities that examine the directionality and angle of light as it passes through or reflects off objects. They frequently engage in activities that use mirrors. They use ideas about reflection and absorption to explain how colors are seen. At this level the probe is useful in determining whether students are “context-bound” in their thinking or if they are making the generalization that an object, regardless of the type of material or color, is reflecting some light if it is seen by the eye.

High School Students
Students develop more sophisticated ideas about light reflection and optics. They may, however, still be context-bound or persist in their intuitive notions that certain characteristics of objects, such as dull or bumpy surfaces, inhibit light reflection. The notion of light reflection by ordinary objects is fundamental to optics instruction and is used to understand image processes such as photography.

Administering the Probe
Be sure students are familiar with the objects on the list. Ask them to cross out any word or object they are unfamiliar with. You might consider explaining, or showing an example of, an object if students are not sure what it is. This probe can also be used as a card sort. In small groups, students can sort cards listing each item into two groups—those that reflect light and those that do not reflect light. Listening carefully to students’ discussions with each other as they sort can lend insight into their thinking. This probe can be combined with “Apple in
the Dark” to further examine students’ ideas about the role of light.

Related Ideas in National Science Education Standards (NRC 1996)

K–4 Properties of Objects and Materials
- Objects have many observable properties.

K–4 Light, Heat, Electricity, and Magnetism
- Light can be reflected by a mirror, refracted by a lens, or absorbed by an object.

5–8 Transfer of Energy
- Light interacts with matter by transmission (including refraction), absorption, or scattering (including reflection). For a person to see an object, light from that object—emitted by or scattered from it—must enter the eye.

Related Ideas in Benchmarks for Science Literacy (AAAS 1993)

K–2 Structure of Matter
- Objects can be described in terms of their physical properties (color, texture, etc.)

3–5 Motion (New benchmark from “Waves” map in Atlas of Science Literacy [AAAS 2001])
- Light travels and tends to maintain its direction of motion until it interacts with an object or material. Light can be absorbed, redirected, bounced back, or allowed to pass through.

6–8 Motion
- Light from the Sun is made up of a mixture of many different colors of light, even though to the eye the light looks almost white. Other things that give off or reflect light have a different mix of colors.
- Something can be “seen” when light waves emitted or reflected by it enter the eye.

Related Research
- Studies by Guesne (1985) and Ramadas and Driver (1989) revealed that middle school students will accept the idea that mirrors reflect light but may not accept the idea that ordinary objects reflect light (AAAS 1993).
- Students’ ideas about reflection may be context-bound. Many students questioned in a study conducted by Anderson and Smith (1983) could describe light as bouncing off mirrors but not off other objects. A few students even lacked a conception of light bouncing or reflecting off any objects. The researchers also found that 61% of the children they sampled thought color to be a property of an object rather than reflected light off an object (Driver et al. 1994).

Suggestions for Instruction and Assessment
- By experimenting with light, K–4 students begin to understand that phenomena can be observed, measured, and controlled in various ways (NRC 1996).

* Indicates a strong match between the ideas elicited by the probe and a national standard’s learning goal.
• “Light can be reflected by a mirror, refracted by a lens, or absorbed by an object” is a learning goal in the National Science Education Standards (NRC 1996). However, use caution when addressing this standard as it may imply to some students and teachers that only mirrors reflect light if other examples are not included. Provide students with a variety of materials to investigate reflection. There is a danger of students becoming context-bound if their experiences only include mirrors or shiny and smooth objects. Emphasize the generalization rather than focusing exclusively on one type of object.

• Explicitly link the idea that if we can see an object, regardless of its observable physical properties, it is reflecting or emitting some light in order for us to be able to see it.

• Have students use a flashlight to observe light reflecting off smooth aluminum foil and rough aluminum foil. Connect this experience with an analogy of a ball (representing the light) bouncing on a smooth floor versus a bumpy surface. Take students outside to bounce a ball on a smooth pavement and then compare how the ball bounces on gravel or some other rough surface. Connect the idea to what happens to light on smooth and rough surfaces (see Markins and McDonough [2004] under “Related NSTA Science Store Publications and NSTA Journal Articles,” below).

• Use real-life applications, such as remote-sensing images, to develop the idea that Earth materials such as water, vegetation, rocks, soil, sand, and clouds reflect light that is detected by satellites.

• Ask students to draw and explain ray diagrams that compare light reflecting off smooth versus rough objects.

• Identify various physical properties of materials and their associated vocabulary, such as texture, luster, color, transparency, translucence, and opaqueness and compare and contrast what happens when light interacts with these materials.

• Alert students to the ways our English language refers to reflection, such as reflection pools and seeing our reflection in a mirror or shiny object. Reflection is almost always spoken of in the context of mirrors, shiny objects, and water. Objects and materials like paper, wood, soil, and rocks are seldom referred to as reflective materials.

• Modify the assessment probe by having students come up with their own list of things they think reflect light and things that do not reflect light. Have them use their own list to explain their reasons for deciding whether an object or material reflects light.

Related NSTA Science Store Publications and NSTA Journal Articles

References

Index

Page numbers in **boldface** type refer to figures.

A
- Alternative frameworks, 3
- Anderson, C., 28
- Andersson, B., 34
- Animals, 117–122
- Annenberg/CPB Private Universe Project, 34
 - “Apple in the Dark” probe, 31–36
 - concept matrix for, 24
- Arnold, B., 89, 135
- Asoko, H. M., 46
- *Atlas of Science Literacy*, 144

B
- Barman, C., 122
- Barr, V., 159
- Baxter, J., 186
 - “Beach Sand” probe, 163–168
 - concept matrix for, 116
- *Benchmarks for Science Literacy*, 5, 11, 12, 144, 159
 - “Birthday Candles” probe, 37–41
 - concept matrix for, 24

C
- “Can It Reflect Light?” probe, 25–30
 - concept matrix for, 24
- Carey, S., 127
- Cells, 131–137

D
- Dreyfus, A., 135, 143
- Driver, R., 12, 28, 34, 58, 173

E
- Earth processes, probes related to, 155–175
 - “Beach Sand,” 163–168
 - “Mountain Age,” 169–175
 - “Wet Jeans,” 155–161
- Elicitation, 2
- Erosion, 164–168, 170–175
- Evaporation, 156–161

Classroom assessment, vii–x, 1–3
 - formative, vii–ix, 1, 2 (*See also* Formative assessment probes)
 - formats for, 1
 - purposes and stages of, 2, 2
 - summative, vii, ix, x, 1, 2
 - types of, vii–viii

Concept matrices, 21
 - for life, Earth, and space science probes, 116
 - for physical science probes, 24
 - “Cookie Crumbles” probe, 5, 61–65
 - concept matrix for, 24
- Cosgrove, M., 53
- Critical-thinking strategies, 3
- Curriculum Topic Study (CTS), 12, 13
F
Fetherstonhaugh, T., 34
Formative assessment, vii–ix, 1, 2
Formative assessment probes, viii–ix
administration of, 9, 11
concept matrices for, 21
curricular and instructional considerations for, 4, 7, 8–9, 10–11
definition of, 3
design and features of, 4–7
justification for response, 4–5, 7
selected-response items, 4, 7
development of, ix–x, 5, 6
explanation of, 10
information provided by, x, 5–7
in life, Earth, and space science, 115–187
modifications of, 9
in physical science, 23–114
purpose of, 3, 9–10
related concepts for, 5, 10
related research for, 11–12
standards and learning goals for, 5, 11
teacher notes accompanying, 9–13
use of, ix–x, 8–9
at different grade levels, 4, 7–8, 10
vignettes of, 13–21
written and oral, 7, 8
Freyberg, P., 167, 172
“Functions of Living Things” probe, 147–153
concept matrix for, 116
“Going Through a Phase” probe, 183–187
concept matrix for, 116
Gravity, 97–102
Guesne, E., 28

H
Happs, J. C., 167, 173
Haslam, F., 152
Heat and temperature, probes related to, 103–114
“Objects and Temperature,” 109–114
“The Mitten Problem,” 103–108
Holding, B., 53, 58
How People Learn: Brain, Mind, Experience, and School, viii
“Human Body Basics” probe, 139–145
concept matrix for, 116

I
“Ice Cubes in a Bag” probe, 5, 7, 49–54
concept matrix for, 24
“Is It an Animal?” probe, 117–122
concept matrix for, 116
vignette for, 13–16, 15
“Is It Living?” probe, 123–130
concept matrix for, 116
“Is It Made of Cells?” probe, 131–137
concept matrix for, 116
“Is It Made of Molecules?” probe, 85–90
concept matrix for, 24
“Is It Matter?” probe, 7, 79–84
concept matrix for, 24
vignette for, 18–21, 19
“Is It Melting?” probe, 73–77
concept matrix for, 24

G
Gal-Chappin, R., 127
“Gazing at the Moon” probe, 177–181
concept matrix for, 116
Gladwell, Malcolm, viii
J
Jungwirth, E., 135, 143

K
Karrqvist, C., 34

L
Landforms, 164–168, 170–175
Leach, J., 46
Learning, 2–3
Learning goals, 5, 11
“Lemonade” probe, 5, 55–60
concept matrix for, 24
Life, Earth, and space science assessment probes, 115–187
“Beach Sand,” 163–168
collection matrix for, 116
“Functions of Living Things,” 147–153
“Gazing at the Moon,” 177–181
“Going Through a Phase,” 183–187
“Human Body Basics,” 139–145
“Is It an Animal?”, 117–122
“Is It Living?”, 123–130
“Is It Made of Cells?”, 131–137
“Mountain Age,” 169–175
“Wet Jeans,” 155–161
Life functions, 148–153
Light, probes related to, 25–41
“Apple in the Dark,” 31–36
“Birthday Candles,” 37–41
“Can It Reflect Light?”, 25–30
Living things, 123–130

M
Making Sense of Secondary Science: Research into Children’s Ideas, 5, 12
“Making Sound” probe, 7, 43–47
concept matrix for, 24
Matter, probes related to, 49–96
“Cookie Crumbles,” 61–65
“Ice Cubes in a Bag,” 49–54
“Is It Made of Molecules?”, 85–90
“Is It Matter?”, 79–84
“Is It Melting?”, 73–77
“Lemonade,” 55–60
“Seedlings in a Jar,” 67–72
“The Rusty Nails,” 91–96
Melting, 73–77
Minstrell, Jim, 8–9
Misconceptions, 3–4, 8, 12
Molecules, 86–90
Moon phases, probes related to, 177–187
“Gazing at the Moon,” 177–181
“Going Through a Phase,” 183–187
“Mountain Age” probe, 169–174
concept matrix for, 116

N
National Research Council, viii
National Science Education Standards, x, 5, 11,
29, 34, 57
National Science Foundation’s Teacher Professional Continuum Study, 13
National Science Teachers Association (NSTA), 12, 13
Nussnovitz, R., 127

O
“Objects and Temperature” probe, 109–114
concept matrix for, 24
Organisms, probes related to, 117–130
“Is It an Animal?”, 117–122
"Is It Living?", 123–130
Osborne, R., 40, 53

P
Photosynthesis, 68–72, 148–153
Physical science assessment probes, 23–114
 “Apple in the Dark,” 31–36
 “Birthday Candles,” 37–41
 “Can It Reflect Light?”, 25–30
 concept matrix for, 24
 “Cookie Crumbles,” 61–65
 “Ice Cubes in a Bag,” 49–54
 “Is It Made of Molecules?”, 85–90
 “Is It Matter?”, 79–84
 “Is It Melting?”, 73–77
 “Lemonade,” 55–60
 “Making Sound,” 43–47
 “Objects and Temperature,” 109–114
 “Seedlings in a Jar,” 67–72
 “Talking About Gravity,” 97–102
 “The Mitten Problem,” 103–108
 “The Rusty Nails,” 91–96
Preconceptions, 2, 3, 8

Q
Questioning, 7, 8

R
Ramadas, J., 28, 34
Reasoning strategies, 3
Robertson, Bill, 12
Rusting, 91–96

S
Sadler, P., 186

Science Curriculum Topic Study: Bridging the

Gap Between Standards and Practice, 5, 13
SciLinks
 atoms/molecules, 88
 body systems, 143
 cells, 133
 changes in matter, 57
 changes in state, 51, 75
 characteristics of living things, 125
 chemical changes, 69
 chemistry of life, 141
 classification, 119
 conservation of matter, 63
 erosion, 172
 gravity, 99
 heat/temperature, 107, 113
 light, 27
 matter, 82
 moon phases, 179
 oxidation, 93
 photosynthesis, 150
 properties of light, 33
 respiration, 149
 rock cycle, 165
 using light, 39
 water cycle, 157
 what is sound?, 45
Scott, P. H., 46
 “Seedlings in a Jar” probe, 5, 67–72
 concept matrix for, 24
Smith, E., 28
Sound, 43–47
Standards, 5, 11
Stavy, R., 40, 52, 53, 64, 70, 127, 173
Stead, B., 40
Stop Faking It! book series, 12
Structure and function, probes related to,
131–153
“Functions of Living Things,” 147–153
“Human Body Basics,” 139–145
“Is It Made of Cells?”, 131–137
Summative assessment, vii, ix, x, 1, 2

T
“Talking About Gravity” probe, 97–102
crural and instructional
tion matrix for, 24
Tamir, P., 127
Teacher notes accompanying probes, 9–13
administering the probe, 11
crural and instructional
siderations, 10–11
planation, 10
urpose, 9–10
ferences, 13
related concepts, 5, 10
related Curriculum Topic Study guides, 13
related NSTA Science Store publications
and NSTA journal articles, 12
related research, 11–12
ards and learning goals, 11
uggestions for instruction and assessment, 12
Temperature. See Heat and temperature
“The Mitten Problem” probe, 103–108
crural and instructional
conception matrix for, 24
“The Rusty Nails” probe, 91–96
conception matrix for, 24
The Tipping Point: How Little Things Can
ake a Big Difference, viii–ix
Tirosh, D., 40, 53, 64, 70, 173
Travis, A., 159
Tregust, D., 34, 152

V
Vision, 32–36

W
Water cycle, 156–161
Wax, N., 127
Weathering, 164–168, 170–175
“Wet Jeans” probe, 155–161
crural and instructional
conception matrix for, 116
vignette for, 16–18, 17