HS-LS2: Ecosystems: Interactions, Energy, and Dynamics.

Performance Expectations

Students who demonstrate understanding can:

HS-LS2-1. Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.

HS-LS2-4. Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.

HS-LS2-5. Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.

Science and Engineering	Disciplinary Core Ideas	Crosscutting Concepts
Practices		
Using Mathematics and	LS2.A: Interdependent Relationships in	Scale, Proportion, and
Computational Thinking	Ecosystems	Quantity
Mathematical and computational	Ecosystems have carrying capacities, which are	The significance of a
thinking in 9-12 builds on K-8	limits to the numbers of organisms and	phenomenon is dependent on
experiences and progresses to	populations they can support. These limits result	the scale, proportion, and
using algebraic thinking and	from such factors as the availability of living and	quantity at which it occurs.
analysis, a range of linear and	nonliving resources and from such challenges	(HS-LS2-1)
nonlinear functions including	such as predation, competition, and disease.	
trigonometric functions,	Organisms would have the capacity to produce	Energy and Matter
exponentials and logarithms, and	populations of great size were it not for the fact	Energy cannot be created or
computational tools for	that environments and resources are finite. This	destroyed—it only moves
statistical analysis to analyze,	fundamental tension affects the abundance	between one place and
represent, and model data.	(number of individuals) of species in any given	another place, between
Simple computational	ecosystem. (HS-LS2-1)	objects and/or fields, or
simulations are created and used		between systems.(HS-LS2-4)
based on mathematical models	LS2.B: Cycles of Matter and Energy Transfer	
of basic assumptions.	in Ecosystems	Changes of energy and
	Plants or algae form the lowest level of the food	matter in a system can be
Use mathematical and/or	web. At each link upward in a food web, only a	described in terms of energy
computational representations of	small fraction of the matter consumed at the	and matter flows into, out of,
phenomena or design solutions	lower level is transferred upward, to produce	and within that system. (HS-
to support explanations. (HS-	growth and release energy in cellular respiration	LS1-5),
LS2-1)	at the higher level. Given this inefficiency, there	
	are generally fewer organisms at higher levels of	
Developing and Using Models	a food web. Some matter reacts to release energy	
Modeling in 9–12 builds on K–8	for life functions, some matter is stored in newly	
experiences and progresses to	made structures, and much is discarded. The	
using, synthesizing, and	chemical elements that make up the molecules of	
developing models to predict and	organisms pass through food webs and into and	
show relationships among	out of the atmosphere and soil, and they are	
variables between systems and	combined and recombined in different ways. At	
their components in the natural	each link in an ecosystem, matter and energy are	

and designed worlds.	conserved. (HS-LS2-4)	
Develop a model based on evidence to illustrate the relationships between systems or components of a system. (HS-	Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, oceans, and geosphere through	
LS2-5)	chemical, physical, geological, and biological	
	processes. (HS-LS2-5)	

Common Core State Standards Connections:

ELA/Literacy –

WHST.9-12.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-LS2-1)

Mathematics –

MP.2 Reason abstractly and quantitatively. (HS-LS2-1, HS-LS2-4)

MP.4 Model with mathematics. (HS-LS2-1, HS-LS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-LS2-1, HS-LS2-4)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-LS2-1, HS-LS2-4) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-LS2-1, HS-LS2-4)