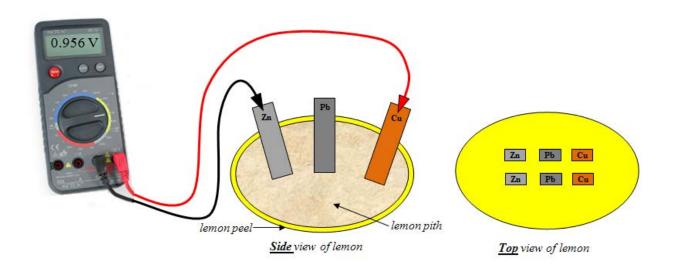
Lab Activity 1: Which metals make the best lemon battery?


Materials

- digital multimeter (DMM)
- Alligator clip leads
- one fresh lemon
- two zinc plates
- two lead plates
- two copper plates

Procedure

1. Puncture the lemon with each of the metal pieces so that each metal piece contacts the pith of the lemon. Metals should be in a direct line and not contact one another (Figure 1). Make a second row of metal pieces about 1.27 cm (0.5 in.) from the first.

Figure 1: Lemon battery diagram.

- 2. Take some voltage measurements from the lemon battery:
 - a. Connect the black lead from the DMM to the zinc (Zn). Measure the voltage between the zinc and each of the other metals to the nearest 100th of a volt (Figure 1). Fill in the first column of Figure 2, using zinc as the reference or common ground.
 - b. Repeat this process using lead (Pb) as the reference metal to complete the second column of Figure 2.
 - c. Use copper (Cu) as the reference to complete the third column.

(**Hint:** Remember to always keep the black lead of the DMM connected to the reference.)

Reference metals	Zinc (Zn)	Lead (Pb)	Copper (Cu)	
Test metals	Pb =V	Zn =V	Pb =V	
	Cu =V	Cu =V	Zn =V	
	Zn =V	Pb =V	Cu =V	

Figure 2: Voltages produced between reference metals and other test metals.

- 3. Many important chemical reactions involve electron transfer from one substance to another. This class of reactions is called *reduction–oxidation* or *redox reactions*. One substance is oxidized (i.e., loses electrons), while the other is reduced (i.e., gains electrons).
 - a. In the first column of Figure 3, arrange the voltages produced using zinc as a reference metal. List these in order from the most positive to the least positive.
 - b. List the metal associated with each voltage in the second column.
 - c. Decide whether this metal gains or loses an electron. Check the appropriate box in columns three, four, and five.
 - d. Repeat this process for Figure 4 (using lead as a reference) and in Figure 5 (using copper as a reference).

(**Hint:** A positive voltage indicates that electrons will flow to the reference metal [metal gains electron]. A negative voltage indicates that the reference metal will lose electrons. A zero voltage indicates that there was no electron transfer.)

	Voltage (V)	Metal	Gains electrons (metal	Loses electrons (metal	Neither
Master aitima			reduced)	oxidized)	
Most positive voltage					
Least positive voltage					

Figure 3: Hierarchy of voltages with zinc as a reference.

Figure 4:Hierarchy of voltages with lead as a reference.

	Voltage (V)	Metal	Gains electrons (metal reduced)	Loses electrons (metal oxidized)	Neither
Most positive					
voltage					

Least positive			
voltage			

Figure 5: Hierarchy of voltages with copper as a reference.

	Voltage (V)	Metal	Gains electrons (metal reduced)	Loses electrons (metal oxidized)	Neither
Most positive voltage					
Least positive voltage					

- 4. Examine your three hierarchies of voltages tables (Figures 3–5).
 - a. Which metal always has the most positive voltage?
 - b. Which metal always has the least positive voltage?
 - c. Which metal has the greatest tendency to oxidize?
 - d. Which metal has the greatest tendency to reduce?
 - e. Which metal can either oxidize or reduce?
 - f. Which two metals would you select if you were building a battery with a maximum positive voltage?