Summary of challenges and opportunities in teaching nanoscience.

The challenge		provides the opportunity to
1	You will not be able to know all the answers to student (and possibly your own) questions ahead of time.	 Model the process scientists use when confronted with new phenomena: Identify and isolate questions to answer Work collectively to search for information using available resources (e.g., textbooks, scientific journals, online resources, scientist interviews) Incorporate new information and revise previous understanding as necessary Generate further questions for investigation
2	Traditional chemistry and physics concepts may not be applicable at the nanoscale level.	 Address the use of models and concepts as scientific tools for describing and predicting chemical behaviour: Identify simplifying assumptions of the model and situations for intended use Discuss the advantages and limitations of using conceptual models in science Integrate new concepts with previous understandings
3	Some questions may go beyond the boundary of our current understanding as a scientific community.	 Involve students in exploring the nature of knowing: How we know what we know The limitations and uncertainties of scientific explanation How science generates new information How we use new information to change our understandings
4	Nanoscience is a multidisciplinary field and draws on multiple bodies of knowledge from chemistry, biology, and physics.	 Engage and value our student knowledge beyond the area of chemistry: Help students create new connections to their existing knowledge from other disciplines Highlight the relationship of different kinds of individual contributions to our collective knowledge about science Explore how different disciplines interact to explain real world phenomena

(**Editor's note:** Figure adapted from the NanoSense Clear Sunscreen unit with permission under a Creative Commons Attribution 3.0 License)