NGSS Chart with Common Core State Standards connections

2. Earth's Surface Systems: Processes that shape the Earth

Students who demonstrate understanding can:

2-ESS2-1 Compare multiple solutions designed to slow or prevent wind and water from changing the shape of the land.

2-ESS2-2 Develop a model to represent the shapes and kinds of land and bodies of water in an area.

The performance expectations above were developed using the following elements from *A Framework for K–12 Science Education* (NRC 2012):

Science and Engineering	Disciplinary Core Ideas	Crosscutting Concepts
Practices		
	ESS2.A: Earth Materials and	Patterns
Developing and Using	Systems	• Patterns in the natural
Models	• Wind and water can	world can be observed.
Modeling in K–2 builds on	change the shape of the	Stability and Change
prior experiences and	land.	• Some things stay the
progresses to include using,	ESS2.B: Plate Tectonics and	same while other things
and developing models that	Large-Scale System	change.
represent concrete objects or	Interactions	
design solutions.	• Maps show where things	
• Develop a model to	are located. One can map	
represent patterns in the	the shapes and kinds of	
natural world.	land and water in any	
Constructing Explanations	area.	
and designing Solutions.	ETS1.C Optimizing the	
Constructing explanations and	Design Solution	
designing solutions in K–2	• Because there is always	

builds on prior experiences and	more than one solution to
progresses to the use of	a problem, it is useful to
evidence or ideas in	compare designs, test
constructing explanations and	them, and discuss their
designing solutions.	strengths and
• Compare multiple solutions	weaknesses.
to a problem.	

CCSS Connections for English Language Arts and Mathematics

SL.2.1 Participate in collaborative conversations with diverse partners about grade 2 topics and texts with peers and adults in small and large groups.

2MD.1 Measure and estimate lengths in standard units: Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.

Additional Resources by Group

Economically Disadvantaged Students

- Calabrese Barton, A., E. Tan, and T. O'Neill, T. Forthcoming. Science education in urban contexts: New conceptual tools and stories of possibilities. In *Handbook of research in science education*, *eds.* S. K. Abell and N. G. Lederman. 2nd ed. Mahwah, NJ: Lawrence Erlbaum Associates.
- González, N., L. C. Moll, and C. Amanti. 2005. *Funds of knowledge: Theorizing practices in households, communities, and classrooms*. Mahwah, NJ: L. Erlbaum Associates.
- Krajcik, J. S., and P. Blumenfeld. 2006. Project-based learning. In *The Cambridge handbook of the learning sciences*, ed. R. K. Sawyer. New York: Cambridge.

Major Racial and Ethnic Groups

- Anderson, C. 2010. Environmental literacy project. Michigan State University. http://edr1.educ.msu.edu/EnvironmentalLit/publicsite/html/cc_tm_tools.html
- Ladson-Billings, G. 1995. Toward a theory of culturally relevant pedagogy. *American Educational Research Journal* 32 (3): 465–491.
- Lee, O., and C.A. Buxton. 2010. *Diversity and equity in science education: Theory, research, and practice.* New York: Teachers College Press.

Students With Disabilities

Stancavage, F., F. Makris, and M. Rice. 2007. SD/LEP inclusions/exclusion in NAEP: An investigation of factors affecting SD/LEP inclusions/exclusions in NAEP. www.air.org/publications/documents/NAEP_inclusion.pdf.

English Language Learners

- Fathman, A. K., and D. T. Crowther. 2006. Science for English language learners: K–12 classroom strategies. Arlington, VA: National Science Teachers Association.
- Lee, O., H. Quinn, and G. Valdés. Forthcoming. Science and language for English language learners: Language demands and opportunities in relation to *Next Generation Science Standards*. *Educational Researcher*.
- Rosebery, A. S., and B. Warren, eds. 2008. *Teaching science to English language learners: Building on students' strengths*. Arlington, VA: National Science Teachers Association.

Gender

- Baker, D. 2013. What works: Using curriculum and pedagogy to increase girls' interest and participation in science and engineering. *Theory Into Practice* 52 (1): 14–20.
- Milgram, D. 2011. How to recruit women and girls to the science, technology, engineering, and math (STEM) Classroom. *Technology and Engineering Teacher* 71 (3): 4–11.
- Scantlebury, K., and D. Baker. 2007. Gender issues in science education research: Remembering where the difference lies. In *Handbook of research in science education, eds.* S. K. Abell and N. G. Lederman. 2nd ed. Mahwah, NJ: Lawrence Erlbaum Associates.

Students in Alternative Education

- Almeida, C., C. Le, and A. Steinberg. 2010. *Reinventing alternative education: An assessment of current state policy and how to improve it.* Boston, MA: Jobs for the Future, Education for Economic Opportunity.
- Hammond, C., D. Linton, J. Smink, and S. Drew. 2007. *Dropout risk factors and exemplary programs*. Clemson, SC: National Dropout Prevention Center, Communities in Schools, Inc.
- Quinn, M. M., J. M. Poirier, S. E. Faller, R. A. Gable, and S. W Tonelson. 2006. An examination of school climate in effective alternative programs. Preventing School Failure 51 (1): 11–17.

Gifted and Talented Students

- Renzulli, J. S. 2012. Reexamining the role of gifted education and talent development for the 21st century: A four-part theoretical approach. *Gifted Child Quarterly* 56 (3): 150–159.
- Tomlinson, C. A. 2005. Quality curriculum and instruction for highly able students. *Theory into Practice* 44: 160–166.