Summary of the Embedded Assessments

	Embedded Assessments
Engage	Individual Assessment
	Team's Physical Model and Guided Questions
	 How long does it take Earth to revolve around the Sun?
	• How long does it take Earth to revolve around the Sun?
	• Is Earth's orbit more circular or more elliptical?
	• What season is the southern hemisphere having when the northern
	hemisphere is having spring?
	• Did your team vary the distance of your Earth models from the light?
	If so, explain.
	• Did your team change the tilt of your Earth models? If so, explain
	how.
Explore	With your team, follow the procedures in the "Exploration" section and a
	make a sketch of your new, revised model. Explain any changes that you
	made to the distance of your Earth models from the light and the tilt of your
	Earth model.
Explain	Label the two-dimensional diagram of the seasons based on your three-
	dimensional model. Include the following:
	• Earth's axis, showing the tilt,
	• arrows to show the movement of Earth around the Sun,
	• names of the seasons, and
	• the date each season begins.
Extension	As you construct and use a Sundial and an astrolabe and study the amount of
	daylight and the path of the Sun at different latitudes, answer the following
	questions:
	• Describe the path of the Sun on the day you did your measurements.
	• How would the path be different at other times of the year? Explain.
	• Study the three tables of daylight information and graphs of the Sun's
	a may not anot set of augment another of an eres of an eres

	path for the three cities. Based on the data and graphs, answer the
	following questions:
	• During what season do all three cities have the greatest amount
	of daylight?
	• During what season do all three cities have the shortest amount
	of daylight?
	• As the latitude increases how does the length of daylight on
	December 21 change? How does the length of daylight on June
	20 change?
	• As the latitude increases how does the angle and path of the
	Sun change on the first day of summer? How does the angle
	and path of the Sun change on the first day of winter?
Summative	Individual Assessment
Evaluation	Individual Self-Reflections
	• Why does the length of daylight vary throughout the seasons at
	different latitudes?
	• Is the angle of the Sun's elevation ever 90 degrees above south Florida
	(26°N)? Why or why not?
	• Why are the warmest climates located near the equator?
	• Why is it warmer in the summer than in the winter on Earth?
	• Why does the North Pole have more daylight in the summer than we
	do in South Florida? Why is it so much colder there?
	• Using what you have learned in these activities, explain why the North
	Pole has 24 hours of daylight on June 21 and the South Pole has 24
	hours of darkness. You can use a diagram.
	• What causes the seasons on Earth? Look back at your drawing and
	make any changes to reflect your understanding after doing the lesson.
	• How have your ideas on the cause of the seasons changed as a result
	of this lesson?