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Experimental Design & Summary Statistics Primer  

 
Statistics and Science 
From an early age, we are taught the importance of the scientific method in conducting research. 
However, just as we need a uniform and organized process by which to conduct studies, it is also 
necessary to utilize a standardized procedure, or statistics, to analyze and interpret our data. The 
statistical method provides scientists and researchers with a unifying language in which they can 
describe their data and support their conclusions.  
 
Statistics and Biocore 
In the Biocore labs, as in other research courses, you are given the opportunity to develop and 
study your own research questions that further expand on the current lab topic. Statistics will 
allow you to more appropriately describe your data and validate your conclusions. As you 
progress through the sequence of labs, your understanding of the relationship between statistics 
and science will grow, while improving your experimental designs.  
 
Populations and Samples 
In Biocore you will use data from small samples, which represent larger populations, to make 
conclusions about your questions and hypotheses. Here’s an example to help you understand the 
difference between samples and populations: Let’s say you are interested in the effects of 
chemical runoff from a local carwash into Willow Creek. Your lab instructors have suggested 
that Daphnia magna, a well-known indicator species, would serve as an excellent test species for 
this question. As a result, you have chosen all of the D. magna in Willow Creek to serve as your 
population. 

A population is “the set of all individuals of interest in a particular study.”* 
Obviously, in Willow Creek it would be an impossible task to capture and examine the entire 
population of D. magna. A more logical approach would to be to study a smaller representation 
of the D. magna population and then generalize your conclusions to the whole population in 
Willow Creek. In other words, you need to select a sample of D. magna from the large 
population in Willow Creek. 

A sample is “a representative selection of a population that is examined to gain 
statistical information about the whole.”∂ 

Figure 1 helps to illustrate the relationship between the population and the sample. The 
population is 
composed of all 
the possible 
individuals of a 
particular group 
of interest, such 
as the D. magna 

Fig. 1: An illustration of the 
relationship between the 
population and a sample. The 
population is made up of all the 
possible individuals, which are 
represented by the X’s O’s and 
□’s, of the group of interest. The 
various shapes represent the 
individual differences in the 
variable of interest (e.g., heart 
rate, body size) within the 
population. The sample is a 
smaller subset of individuals 
drawn from the population. If 
the sample variation is 
representative of the population 
variation, the sample data and 



of Willow Creek. The sample is a smaller subset of D. magna from the population. If the sample 
is representative of the population, the study results can be used to generalize about the 
population.  
 
 
Notice that the population has been defined as the D. magna in Willow Creek, as opposed to the 
entire species. It is important to carefully define the population of interest, taking into account 
your research question, experimental design, and resources. Table 1 provides some examples of 
appropriately defined samples from a specified population (keep in mind that these are only 
possible examples; sample sizes and definition may vary for a particular population). 
 
Table 1: Three examples of a specified population and a possible representative sample.  

Population Sample 
All 250 Galapagos Finches on the island 

of Isabela 
75 Finches obtained from locations around 
the entire island via mark-recapture method 

All of the yeast cells in a 500mL beaker  

After stirring to evenly distribute the yeast in 
the liquid medium, 10 ml of yeast are 

removed as a representative sample of the 
beaker population 

UW-Madison students (male and female) 
between the ages of 18 and 22  

150 individuals from the UW campus who 
reflect the diversity in gender, fitness, age, 

and race within the population 
 
Valuing Variability 
Experimental results must be repeatable in order to be accepted as valid. This is done both by 
including replicate points in the design of the experiment and by repeating the entire experiment. 
Laboratory experiments are usually repeated many times before they are published. Field 
experiments are usually repeated or are carried out at more than one site. Replication is 
especially important in field experiments. Natural systems vary in space and through time. 
Replication helps the experimenter differentiate between natural variation and changes caused by 
the experimental treatment under review. Experimenters are looking for changes above and 
beyond the natural variation.  
 
Natural variation is a combination of both environmental and individual variation. For example, 
yeast suspended in solution would be exposed to varying oxygen levels, depending on their 
location in a non-shaking flask. Those at the top of the flask would receive greater oxygen 
exposure than those at the bottom of the flask. This is clear example of natural, environmental 
variation. It is to be expected that the environment varies from location to location, even in a 
system as small and isolated as a flask, test tube, or beaker. In contrast, natural, individual 
variation refers to the differences between organisms within samples. For example, the amount 
of body fat on an individual can affect the readings of an electromyogram (EMG) signal measure 
at the skin’s surface. (This is because a participant with a higher level of body fat will produce a 
less intense and more variable EMG signal than a participant with lower body fat due to the 
closer proximity of electrodes to muscle.)  
 

POPULATION, r 



How many replicates should I use? 
 
When thinking about the number of replicates to use in an experiment, scientists will often rely 
on statistical estimates based on the variation observed in pilot study data. For Biocore, a good 
rule of thumb is that three samples is the absolute minimum for replication (you cannot estimate 
variability from only two samples). Ideally, you should measure many more than three replicates 
when you are attempting to generalize about a population, especially when you know that the 
population or the system you are working in has a great deal of environmental and/or individual 
variation (think 8-20 replicates!). Through replication, you hope to define how much of the 
observed variation is natural and how much is explained by your independent variable(s). 
 
Types of Samples 
Here, we introduce you to some analytical methods used by ecologists in designing and carrying 
out experiments. Ecological data is often full of variation because it is difficult to control all 
experimental parameters in the field. Therefore, it is very important to know your system, 
and/organism in order to anticipate variation when designing an experiment, and planning the 
statistical methods for analyzing data.  
 

For example, let’s say we wanted to know how repeatedly mowing a field early in the spring 
influenced the height of weedy Canada thistles. To run a controlled experiment, you mow half of 
your large field but leave the other half un-mowed as a control. This would be a simple sample. 
Many Canada thistles grow in both the mowed and un-mowed parts of the field later in the 
season. In order to make sure the plants you measure are ‘representative’ of all plants influenced 
by mowing (or non-mowing) you must take pains to make sure the sample is not biased, or that it 
is not unduly influenced by other environmental factors such as differences in soil moisture or 
nutrients across the field.  
 

Simple Sample 

Mow Non-mow 

 
But let’s say now that the far west side of the field has slightly greater soil moisture (indicated by 
the gray shading in the systematic example below) than the center or eastern side of the plot. In 
order to account for this natural variation, we can alter the experimental design so that there are 
mow and non-mow areas in both the wetter and drier areas of the field, resulting in a systematic 
sample. This design attempts to systematically control for the variation in moisture. 
 
Systematic Sample 

Non-
mow Mow Non-

mow Mow 

Mow Non-
mow Mow Non-

mow 
 



If you are setting up a field experiment and there are no apparent environmental differences in 
your site, it would still be beneficial to split the area up into smaller plots. It would also be 
advantageous to randomize treatments to plots, resulting in a random sample, or to stratify the 
randomization so that plots are randomized within the rows, yielding a stratified random 
sample (notice that within each row there are 2 mow and 2 non-mow). 
 
Random Sample 

Non-
mow 

Non-
mow 

Non-
mow Mow 

Mow Mow Mow Non-
mow 

 
 
Stratified Random Sample 

Non-
mow 

Non-
mow Mow Mow 

Mow Non-
mow Mow Non-

mow 
 
It is also important to note the applicability of theses sampling methods to the lab setting. For 
example, if you were attempting to determine the reaction rate of a particular enzyme, it would 
be necessary to test varying substrate concentrations. To make it simple, you choose two 
concentrations, 0M and 0.35M, and 4 replicates of each, for a total of 8 test tubes. The assay that 
tests the reaction rate requires the use of a warm water bath, but we don’t know for certain that 
the water baths heat the water evenly. Either the test tubes could be placed in a simple sample 
arrangement or, if you wanted to control for temperature variance within the water bath, you 
could use systematic, random or stratified sampling.  
 
If you are setting up test tubes in a rack and there are no apparent water temperature differences 
within the bath, it would still be beneficial to split the area up into smaller plots. It would also be 
advantageous to randomize treatments to plots, resulting in a random sample, or to stratify the 
randomization so that plots are randomized within the rows, yielding a stratified random 
sample.  
 
Controls and Replicates 
Controls are used to identify (and sometimes to correct for) results that are not due to variation 
in your experimental (independent) variable. For example, suppose that you have learned that 
controlled burning is sometimes an effective tool for combating invasive species, and you want 
to design an experiment to test whether burning will set back the purple loosestrife that is taking 
over your favorite wetland. You would not simply burn the wetland and see what happens 
because a reduction in loosestrife could be due to something other than your experimental 
treatment (burning). For example, it could be due to an influx of a particular insect or to the 
weather that year. It would be important to leave part of the wetland unburned as a control. You 
can then compare the burned and unburned parts. 
 



In order to start making generalizations about the effectiveness of burning on control of purple 
loosestrife outside of your favorite wetland, you would have to locate several (>5) different 
wetlands that have similar density of purple loosestrife, and set up treatment (burn) and control 
(not burn) areas. If each wetland is independent of each other (not connected or influenced by 
one another), then “wetland” can be considered a sampling unit and each wetland is an 
independent replicate.  
 
In chemistry you probably are used to controlling all the variables except the one you want to 
test. This usually is not possible in complex ecosystems (e.g., the top of the hill may be different 
from the bottom of the hill; a bird may have deposited an unusually high concentration of seeds 
in one particular place). Ecologists try to minimize the effect of environmental variation within a 
site as much as they can by using replication in their experimental design. For example, in 
designing our experiments comparing three methods (plus control) for removing weeds from the 
Biocore Prairie prior to planting prairie species, we divided the area into twelve plots and 
randomly assigned one of the three treatments to each plot with three plots left untreated as 
controls. With 3 replicates of 3 treatments (plus control) we hoped to reduce the effect of known 
and unknown on-site variation to reveal obvious real differences among treatments.  
 
Types of Variables and Measurement Scales 
When conducting a study, your variables tend to fall into one of two categories—discrete or 
continuous. It is important to distinguish the types of variables you are working with, because the 
type of data influences the kind of analysis and the presentation that is most appropriate. 
Discrete variables are “separate, indivisible categories [and] no values can exist between two 
neighboring categories.”* For example, if you were counting the number of plant species in a 
given plot, your data would only consist of whole numbers; that is you could not have 10.5 plant 
species, only 10 or 11 plant species. You would collect categorical data when you are surveying 
trees in a forest or plants on the prairie, finding 10 species of weeds and 18 species of prairie 
plants where the categories are “weeds” or “prairie plants”. 
 
Continuous variables “have an infinite number of possible values that fall between any two 
observed values and can be divisible into an infinite number of fractional parts.”* In other words, 
continuous data are measured and the units of measurement can be infinitely subdivided (at least 
to the resolution of the measuring instrument), e.g., length, weight, time.  For instance, if you 
were measuring the amount of rainfall in inches for a given summer, you could find 20 inches of 
rainfall or 21.34 inches of rainfall. Table 2 provides some concrete examples of discrete and 
continuous data.  
 
Table 2: Three examples of how data can be measured and interpreted using the four types of 
measurement scales.  

Discrete Continuous 
 

Plant ID: Leaf type 
(toothed, entire, divided, or lobed) 

 

Plant height in inches 

 
Gender of Drosophila flies 

Enzyme activity as measured by light 
absorption 



(male or female) 
 

 
Number of water bugs in water sample 

 
Amount of rainfall on the prairie in inches 

 
Number shmooing yeast cells 

 

Muscle activity as measured by an 
electromyogram (EMG) 

 
Appreciating Raw Data 
Previously, we discussed the idea of using the sample to represent the population for your study. 
After data collection, it is important to examine your raw (untransformed) data and determine 
whether the sample is indeed a fair representation of the population. Therefore it is often 
necessary to visualize your raw data graphically to see how data points are distributed around 
some mean value and to gain perspective about the population. 
 
There are several types of graphs that can accomplish this. Frequency distributions illustrate 
the occurrence of a particular score or piece of data in a study. Suppose, for example, that we 
want to know the average stem length of red clover growing in a particular field.  If we randomly 
select and measure a large number of plants and plot a histogram of the values, we find a bell-
shaped curve called the normal distribution (see Fig. 2).   
 
Most populations in the natural world tend to follow a normal distribution, or a “bell –curve,” 
where most individual values fall near and are equivalently distributed around some mean value 
as shown in Figure 2. Therefore, it is a common assumption that the population that you are 
studying will have a normal distribution. Accordingly, when you graphically depict your sample 
data, in most cases, it should closely resemble a normal curve. This is necessary and important 
since many statistical tests are based on the assumption that the data are approximately normally 
distributed. However, if this is not true of the data, corrections for various tests do exist.  



Figure 2:  Frequency distribution of the stem lengths of a large, random sample (n=2128) of red 
clover (Trifolium pratense) in July 1999. 
 
Another way to visualize continuous data is through an x-y scatter plot, which allows you to 
examine variation among replicates for any given treatment, or variation among individuals for 
any given feature. This can give insights into certain trends and/or possible relationships between 
variables.  For example, in Figure 3 Galapagos finch beak length is plotted as a function of wing 
length for 35 birds.  It is evident that, for any given wing length, beak length can vary among 
birds.  (Look carefully at the eight birds whose wing length measured 67 mm: their beak lengths 
ranged from about 8.5 to 11.5 mm!) 
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Figure 3:  Scatterplot of Galapagos Island finch beak length as a function of wing length for 35 
birds.  Note that the x and y-axes do not begin at zero. 
  
As you can see, a visual representation of the raw data can yield valuable information about the 
population that you are trying to study. If the variation within your sample is representative of 
the population variation, the distribution of the data will mirror that of the population. In reality, 
a sample may come close to this, but this is usually rare. Consequently, it is much more 
beneficial and accurate to use larger sample sizes and more replicates.  
 
Descriptive Statistics 
Two of the most useful measures for characterizing data from a sample are an indication of the 
central tendency and an indication of the dispersion of the data.  Measures of the central 
tendency are the mean (average value), mode (most common value), and median (value at 
which half are greater and half are smaller).  Locate these on Figure 1 above.  The mean is given 
by summing each individual value (x1, x2, x3, ....xi) and dividing by n, the number individuals 
or samples measured. 

Mean = x =
xi∑

n
 

 
One way to characterize the dispersion of the data is to give the range (spread from lowest to 
highest).  The problem with using the range as a measure of dispersion is that it increases as we 
include more samples; furthermore, it tells us nothing about the average variation.  You might 
think it useful to simply average the deviations from the mean, but this doesn’t work because the 
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deviations in the negative direction exactly cancel out the deviations in the positive direction and 
we end up with zero.  We can, however, add up the squares of the deviations.  After dividing by 
an indicator of our sample size, this gives the variance (s2). 

Variance =
xi − x )2(∑
n−1

 

 
The squared deviations are divided by n-1, rather than n, because dividing by n tends to 
underestimate the population variance when the sample size is small (e.g., less than 30). 
 
Think about what the variance tells you compared with what the range tells you.   
 
One problem with variance is that its units don't make sense (e.g., [beats/min.]2 for heart rate).  It 
is more common to use the square root of the variance, known as the standard deviation.  You 
can think of the standard deviation as the average amount of individual deviation from the mean.   

Standard deviation = s =
( xi − x )2∑

n −1 variance=  

 
For measurements that follow the normal distribution, 68% of all the observations lie within the 
range covered by one standard deviation on either side of the mean (i.e., the mean ± 1 SD).  95% 
of the observations lie within 2 SD of the mean.  Practically all (99.7%) of the observations lie 
within 3 SD of the mean.   
 
We would like to be able to use data from our samples to make inferences about the population 
from which the samples were taken.  The standard deviation tells us the variation among our 
samples; it does not allow us to compare 2 populations.  For that we need to determine the 
standard error of the mean (see below). 
 
Suppose that we measure many sets of samples from our population and calculate the mean for 
each set.  These means will not be identical but will cluster around the average for the whole 
population.  In fact, the means also show the bell-shaped pattern called the normal distribution.  
It should make sense to you that the amount of variation (dispersion) of the means of the sample 
values will not be as great as the dispersion of the sample values themselves.  The standard 
deviation of the set of means is called the standard error of the mean.  Standard errors are 
usually not obtained from a frequency distribution by repeated sampling but are estimated from 
only a single sample and represent the expected standard deviation for a large number of 
repeated samples. Usually, we do not have many sets of means, just one.  Therefore, we calculate 
the standard error of the mean by dividing the standard deviation by n . 

Standard error of the mean = sx =
s
n

 

The beauty of the standard error of the mean is that it tells us a great deal about the population 
we are studying.  The standard error of the mean allows us to determine, with a certain 
probability, the limiting values between which the "true" value of the population lies.  For a 
sample of reasonable size (e.g., 30 or more) that follows the normal distribution, the 95% 
confidence level is x ±1.96sx .  This says that there is a 95% chance that the true mean of the 



population is within these limits. (1.96 is often rounded to 2).  As can be seen from the formula 
for SE, this interval becomes smaller (tighter) as the sample size, n, gets larger.   
 
 


